1. Pater Z (1998) A study of cross wedge rolling process. J Mater Process Tech 80(1):370-375 2. Shu XD (2014) Cross wedge rolling theory and forming technology. Science Press, Beijing, pp 1-10 3. Hu ZH (2004) Technology and simulation of part rolling by cross wedge rolling. Metallurgical Industry Press, Beijing 4. Gronostajski Z, Pater Z, Madej L et al (2019) Recent development trends in metal forming. Arch Civ Mech Eng 19(3):898-941 5. Hu ZH, Wang BY, Zheng ZH (2018) Research and industrialization of near-net rolling technology used in shaft parts. Front Mech Eng-Prc 13(1):17-24 6. Zhou X, Shao Z, Pruncu CI et al (2020) A study on central crack formation in cross wedge rolling. J Mater Process Tech 279:116549 7. Pater Z (2014) 3.10-Cross-wedge rolling. In:Hashmi S, Batalha GF, Van Tyne CJ et al (eds) Comprehensive materials processing. Elsevier, Oxford, pp 211-279 8. Ghiotti A, Fanini S, Bruschi S et al (2009) Modelling of the Mannesmann effect. Cirp Ann-Manuf Techn 58(1):255-258 9. Wojcik L, Pater Z, Bulzak T et al (2020) Physical modeling of cross wedge rolling limitations. Materials 13(4):867 10. Pater Z, Tomczak J, Bulzak T (2019) Cavity formation in crosswedge rolling processes. J Iron Steel Res Int 26(1):1-10 11. Astapchik SA, Kozhevnikova GV (2014) A study of metal plasticity of billets processed by cross-wedge rolling. News Natl Acad Sci Belarus 3:31-36 12. Pater Z, Tomczak J, Bulzak T et al (2020) Rotary compression in tool cavity-a new ductile fracture calibration test. Int J Adv Manuf Tech 106(9/10):4437-4449 13. Dong YM, Tagavi KA, Lovell MR et al (2000) Analysis of stress in cross wedge rolling with application to failure. Int J Mech Sci 42(7):1233-1253 14. Pater Z, Tomczak J, Bulzak T et al (2019) Prediction of crack formation for cross wedge rolling of harrow tooth preform. Materials 12(14):2287-2295 15. Pater Z, Tomczak J, Bulzak T et al (2019) Determination of the critical value of damage in a channel-die rotational compression test. Int J Mater Form 13:993-1002 16. Bulzak T, Pater Z, Tomczak J et al (2019) A rotary compression test for determining the critical value of the Cockcroft-Latham criterion for R260 steel. Int J Damage Mech 29(6):874-886 17. Huo YM, Lin JG, Bai Q et al (2017) Prediction of microstructure and ductile damage of a high-speed railway axle steel during cross wedge rolling. J Mater Process Tech 239:359-369 18. Mirahmadi SJ, Hamedi M, Ajami S (2014) Investigating the effects of cross wedge rolling tool parameters on formability of NimonicA (R) 80A and NimonicA (R) 115 superalloys. Int J Adv Manuf Tech 74(5/8):995-1004 19. Pater Z, Tomczak J, Bulzak T (2020) Establishment of a new hybrid fracture criterion for cross wedge rolling. Int J Mech Sci 167:105274. https://doi.org/10.1016/j.ijmecsci.2019.105274 20. Cockcroft MG, Latham DJ (1968) Ductility and the workability of metals. J Inst Met 96:33-39 21. Zhou J, Yu YY, Zeng Q (2014) Analysis and experimental studies of internal voids in multi-wedge cross wedge rolling stepped shaft. Int J Adv Manuf Tech 72(9/12):1559-1566 22. Qiu P, Lyu ZQ, Wang B et al (2012) Study on cross wedge rolling processes of middle carbon steels and microstructure and properties of rolled pieces. J Yanshan Univers 36:210-214 23. Yang CP, Dong HB, Hu ZH (2018) Micro-mechanism of central damage formation during cross wedge rolling. J Mater Process Tech 252:322-332 24. Pater Z, Tomczak J, Bulzak T et al (2020) Assessment of ductile fracture criteria with respect to their application in the modeling of cross wedge rolling. J Mater Process Tech 278:116501. https://doi.org/10.1016/j.jmatprotec.2019.116501 25. Sukhorukov SI (2008) Estimation of the used plasticity resource during cross wedge rolling. Proc Mater Press 1(19):39-44 |