1. Gao W, Zhang Y, Ramanujan D et al (2015) The status, challenges, and future of additive manufacturing in engineering. Comput Aided Des 69:65–89 2. Paolini A, Kollmannsberger S, Rank E (2019) Additive manufacturing in construction: a review on processes, applications, and digital planning methods. Addit Manuf 30:100894. https://doi.org/10.1016/j.addma.2019.100894 3. Lee J, Nagalingam AP, Yeo SH (2021) A review on the stateof-the-art of surface finishing processes and related ISO/ASTM standards for metal additive manufactured components. Virtual Phys Prototyp 16:68–96 4. Gu D, Shi X, Poprawe R et al (2021) Material-structure-performance integrated laser-metal additive manufacturing. Science 372(6545):eabg1487. https://doi.org/10.1126/science.abg1487 5. Plocher J, Panesar A (2019) Review on design and structural optimisation in additive manufacturing: towards next-generation lightweight structures. Mater Des 183:108164. https://doi.org/10.1016/j.matdes.2019.108164 6. DebRoy T, Mukherjee T, Milewski JO et al (2019) Scientific, technological and economic issues in metal printing and their solutions. Nat Mater 18:1026–1032 7. Thompson MK, Moroni G, Vaneker T et al (2016) Design for additive manufacturing: trends, opportunities, considerations, and constraints. CIRP Ann 65:737–760 8. Hague R, Campbell I, Dickens P (2003) Implications on design of rapid manufacturing. Proc Inst Mech Eng C-J Mech 217:25–30 9. Pan M, Tong W, Chen F (2016) Compact implicit surface reconstruction via low-rank tensor approximation. Comput Aided Des 78:158–167 10. Courter B (2019) How implicits succeed where B-reps fail. https://ntopology.com/blog/2019/03/28/how-implicits-succeed-where-breps-fail/. Accessed 25 Oct 2021 11. Keeter M (2017) libfive:Home. https://libfive.com/. Accessed 25 Oct 2021 12. Schmidt M, Merklein M, Bourell D et al (2017) Laser based additive manufacturing in industry and academia. CIRP Ann 66:561–583 13. Qin Y, Qi Q, Scott PJ et al (2019) Status, comparison, and future of the representations of additive manufacturing data. Comput Aided Des 111:44–64 14. Liao YS, Chiu YY (2001) A new slicing procedure for rapid prototyping systems. Int J Adv Manuf Technol 18:579–585 15. Sabourin E, Houser SA, Helge BJ (1996) Adaptive slicing using stepwise uniform refinement. Rapid Prototyp J 2:20–26 16. King B, Rennie A, Bennett G (2021) An efficient triangle mesh slicing algorithm for all topologies in additive manufacturing. Int J Adv Manuf Technolnol 112:1023–1033 17. Zhang Z, Joshi S (2015) An improved slicing algorithm with efficient contour construction using STL files. Int J Adv Manuf Technol 80:1347–1362 18. Bhandari S (2022) A graph-based algorithm for slicing unstructured mesh files. Addit Manuf Lett 3:100056. https://doi.org/10.1016/j.addlet.2022.100056 19. Starly B, Lau A, Sun W et al (2005) Direct slicing of STEP based NURBS models for layered manufacturing. Comput Aided Des 37:387–397 20. Sikder S, Barari A, Kishawy HA (2015) Global adaptive slicing of NURBS based sculptured surface for minimum texture error in rapid prototyping. Rapid Prototyp J 21:649–661 21. Gohari H, Barari A, Kishawy H (2018) An efficient methodology for slicing NURBS surfaces using multi-step methods. Int J Adv Manuf Technol 95:3111–3125 22. Feng J, Fu J, Lin Z et al (2018) Direct slicing of T-spline surfaces for additive manufacturing. Rapid Prototyp J 24(4):709–721 23. Lorensen WE, Cline HE (1987) Marching cubes: a high resolution 3D surface construction algorithm. Comput Graph Interact Tech 21(4):163–169 24. Rassovsky G (2014) Cubical marching squares implementation. Dissertation, Bournemouth University 25. Huang P, Wang CCL, Chen Y (2011) Self-intersection free and topologically faithful slicing of implicit solid. In: 2011 international design engineering technical conferences and computers and information in engineering conference, ASME, Washington, 2011 26. Feng J, Fu J, Lin Z et al (2019) Layered infill area generation from triply periodic minimal surfaces for additive manufacturing. Comput Aided Des 107:50–63 27. Ding J, Zou Q, Qu S et al (2021) STL-free design and manufacturing paradigm for high-precision powder bed fusion. CIRP Ann 70:167–170 28. Liu S, Liu T, Zou Q et al (2021) Memory-efficient modeling and slicing of large-scale adaptive lattice structures. J Comput Inf Sci Eng 21(6):061003. https://doi.org/10.1115/1.4050290 29. Garg M, Semwal SK (2018) Implementing dual marching square using visualization tool kit (VTK). In: Future technologies conference 2018. Springer, Vancouver 30. Vlasov R, Friese K, Wolter F (2012) Haptic rendering of volume data with collision determination guarantee using ray casting and implicit surface representation. In: 2012 international conference on cyberworlds. IEEE, Darmstadt 31. Keeter MJ (2020) Massively parallel rendering of complex closedform implicit surfaces. ACM Trans Graphics 39(4):1–10 32. Academy software foundation (2021) OpenVDB:Home. https://www.openvdb.org/. Accessed 27 Oct 2021 33. Museth K (2013) VDB: high-resolution sparse volumes with dynamic topology. ACM Trans Graphics 32(3):1–22 34. Kim H (2010) Tool path generation for contour parallel milling with incomplete mesh model. Int J Adv Manuf Technol 48:443–454 35. Lin Z, Fu J, Shen H et al (2013) Efficient cutting area detection in roughing process for meshed surfaces. Int J Adv Manuf Technol 69:525–530 36. Minetto R, Volpato N, Stolfi J et al (2017) An optimal algorithm for 3D triangle mesh slicing. Comput Aided Des 92:1–10 37. Dawes B, Abrahams D (2007) Boost C++ Libraries. https://www.boost.org/. Accessed 23 Jun 2022 38. UltiMaker (2011) Ultimaker cura: powerful, easy-to-use 3D printing software. https://ultimaker.com/software/ultimaker-cura. Accessed 4 Dec 2022 39. Bhushan B, Caspers M (2017) An overview of additive manufacturing (3D printing) for microfabrication. Microsyst Technol 23:1117–1124 40. Quilez I (1994) Fractals, computer graphics, mathematics, shaders, demoscene and more. https://www.iquilezles.org/www/artic les/distfunctions/distfunctions.htm. Accessed 27 Oct 2021 |