[1] Mylvaganam K, Zhang LC (2014) Effect of residual stresses on the stability of bct-5 silicon. Comput Mater Sci 81:10-14 [2] Zarudi I, Zou J, Zhang LC (2003) Microstructures of phases in indented silicon: a high resolution characterization. Appl Phys Lett 82(6):874-876 [3] Biddut AQ, Zhang LC, Ali YM et al (2009) Achieving a damage-free polishing of mono-crystalline silicon. Key Eng Mater 389:504-509 [4] Bradby JE, Williams JS, Swain MV (2003) In situ electrical characterization of phase transformations in Si during indentation. Phys Rev B 67(8):085205. https://doi.org/10.1103/PhysRevB.67.085205 [5] Hanfland M, Schwarz U, Syassen K et al (1999) Crystal structure of the high-pressure phase silicon VI. Phys Rev Lett 82(6):1197-1200 [6] Goel S, Luo X, Agrawal A et al (2015) Diamond machining of silicon: a review of advances in molecular dynamics simulation. Int J Mach Tools Manuf 88:131-164 [7] Cheong WCD, Zhang LC, Tanaka H (2001) Some essentials of simulating nano-surfacing processes using the molecular dynamics method. Key Eng Mater 196:31-42 [8] Brenner DW (2000) The art and science of an analytic potential. Phys Status Solidi B Basic Res 217(1):23-40 [9] Stillinger FH, Weber TA (1985) Computer simulation of local order in condensed phases of silicon. Phys Rev B 31(8):5262. https://doi.org/10.1103/PhysRevB.31.5262 [10] Tersoff J (1989) Modeling solid-state chemistry: interatomic potentials for multicomponent systems. Phys Rev B 39(8):5566-5568 [11] Erhart P, Able K (2005) Analytical potential for atomistic simulations of silicon, carbon, and silicon carbide. Phys Rev B 71(3):035211. https://doi.org/10.1103/PhysRevB.71.035211 [12] Zhang J, Zhang J, Wang Z et al (2017) Interaction between phase transformations and dislocations at incipient plasticity of monocrystalline silicon under nanoindentation. Comput Mater Sci 131:55-61 [13] Sun J, Cheng L, Han J et al (2017) Nanoindentation induced deformation and pop-in events in a silicon crystal: molecular dynamics simulation and experiment. Sci Rep 7(1):10282. https://doi.org/10.1038/s41598-017-11130-2 [14] Han J, Sun J, Xu S et al (2018) Deformation mechanisms at multiple pop-ins under spherical nanoindentation of (1 1 1) Si. Comput Mater Sci 143:480-485 [15] Kim DE, Oh SI (2006) Atomistic simulation of structural phase transformations in monocrystalline silicon induced by nanoindentation. Nanotechnology 17(9):2259. https://doi.org/10.1088/0957-4484/17/9/031 [16] Sun J, Ma A, Jiang J et al (2016) Orientation-dependent mechanical behavior and phase transformation of mono-crystalline silicon. J Appl Phys 119(9):095904. https://doi.org/10.1063/1.4942933 [17] Dai H, Zhang F, Zhou Y et al (2019) Numerical study of three-body diamond abrasive nanoindentation of single-crystal Si by molecular dynamics simulation. Appl Phys A 125:1-10 [18] Zhang LC, Tanaka H (1999) On the mechanics and physics in the nano-indentation of silicon monocrystals. JSME Int J A-Solid M 42(4):546-559 [19] Cheong WCD, Zhang LC (2000) Molecular dynamics simulation of phase transformations in silicon monocrystals due to nano-indentation. Nanotechnology 11(3):173. https://doi.org/10.1088/0957-4484/11/3/307 [20] Cheong WCD, Zhang LC (2000) Effect of repeated nano-indentations on the deformation in monocrystalline silicon. J Mater Sci Lett 19:439-442 [21] Mylvaganam K, Zhang LC (2009) Scale effect of nano-indentation of silicon-a molecular dynamics investigation. Key Eng Mater 389:521-526 [22] Mylvaganam K, Zhang LC, Eyben P et al (2009) Evolution of metastable phases in silicon during nanoindentation: mechanism analysis and experimental verification. Nanotechnology 20(30):305705. https://doi.org/10.1088/0957-4484/20/30/305705 [23] Vodenitcharova T, Zhang LC (2003) A mechanics prediction of the behaviour of mono-crystalline silicon under nano-indentation. Int J Solids Struct 40(12):2989-2998 [24] Fang Q, Zhang L (2013) Emission of partial dislocations in silicon under nanoindentation. J Mater Res 28(15):1995-2003 [25] Stukowski A (2009) Visualization and analysis of atomistic simulation data with OVITO-the open visualization tool. Modell Simul Mater Sci Eng 18(1):015012. https://doi.org/10.1088/0965-0393/18/1/015012 [26] Fan X, Rui Z, Cao H et al (2019) Nanoindentation of γ-TiAl with different crystal surfaces by molecular dynamics simulations. Materials 12(5):770. https://doi.org/10.3390/ma12050770 [27] Li D (2008) Research on mechanism of nano-machining single crystal silicon and influencing factors by molecular dynamics. Dissertation, Harbin Institute of Technology [28] Sun J, Xu B, Zhuo X et al (2020) Investigation of indenter-size-dependent nanoplasticity of silicon by molecular dynamics simulation. ACS Appl Electron Mater 2(9):3039-3047 [29] Chang L, Zhang L (2009) Mechanical behavior characterisation of silicon and effect of loading rate on pop-in: a nanoindentation study under ultra-low loads. Mater Sci Eng A 506(1/2):125-129 [30] Johnson KL, Kendall K, Roberts AD (1971) Surface energy and the contact of elastic solids. Proc R Soc Lond A 324(1558):301-313 [31] Balamane H, Halicioglu T, Tiller WA (1992) Comparative study of silicon empirical interatomic potentials. Phys Rev B 46(4):2250. https://doi.org/10.1103/PhysRevB.46.2250 [32] Zhang Z, Stukowski A, Urbassek HM (2016) Interplay of dislocation-based plasticity and phase transformation during Si nanoindentation. Comput Mater Sci 119:82-89 [33] Zhang L, Tanaka H (1998) Atomic scale deformation in silicon monocrystals induced by two-body and three-body contact sliding. Tribol Int 31(8):425-433 [34] Zhang LC (2004) Plasticity in monocrystalline silicon: experiment and modelling. Key Eng Mater 274:1-10 [35] Li Z, Li Y, Zhang L (2024) On the deformation mechanism and dislocations evolution in monocrystalline silicon under ramp nanoscratching. Tribol Int 193:109395. https://doi.org/10.1016/j.triboint.2024.109395 [36] Mylvaganam K, Zhang LC (2009) Nanoscratching-induced phase transformation of monocrystalline silicon-the depth-of-cut effect. Adv Mater Res 76:387-391 [37] Mylvaganam K, Zhang LC (2012) Effect of bct-5 Si on the indentation of monocrystalline silicon. Appl Mech Mater 117:666-669 [38] Dai H, Du H, Chen J et al (2019) Investigation of tool geometry in nanoscale cutting single-crystal copper by molecular dynamics simulation. Proc Inst Mech Eng Part J J Eng Tribol 233(8):1208-1220 [39] Liu B, Xu Z, Chen C et al (2020) Numerical and experimental investigation on ductile deformation and subsurface defects of monocrystalline silicon during nano-scratching. Appl Surf Sci 528:147034. https://doi.org/10.1016/j.apsusc.2020.147034 [40] Li J, Fang Q, Liu Y et al (2014) A molecular dynamics investigation into the mechanisms of subsurface damage and material removal of monocrystalline copper subjected to nanoscale high speed grinding. Appl Surf Sci 303:331-343 [41] Tong Z, Liang Y, Jiang X et al (2014) An atomistic investigation on the mechanism of machining nanostructures when using single tip and multi-tip diamond tools. Appl Surf Sci 290:458-465 [42] Dai H, Chen G, Zhou C et al (2017) A numerical study of ultraprecision machining of monocrystalline silicon with laser nano-structured diamond tools by atomistic simulation. Appl Surf Sci 393:405-416 [43] Mylvaganam K, Zhang L (2015) Effect of crystal orientation on the formation of bct-5 silicon. Appl Phys A 120:1391-1398 [44] Kim DE, Oh SI (2008) Deformation pathway to high-pressure phases of silicon during nanoindentation. J Appl Phys 104(1):013502. https://doi.org/10.1063/1.2949404 [45] Hebbache M, Zemzemi M (2003) Nanoindentation of silicon and structural transformation: three-dimensional contact theory. Phys Rev B 67(23):233302. https://doi.org/10.1103/PhysRevB.67.233302 [46] Lorenz D, Zeckzer A, Hilpert U et al (2003) Pop-in effect as homogeneous nucleation of dislocations during nanoindentation. Phys Rev B 67(17):172101. https://doi.org/10.1103/PhysRevB.67.172101 [47] PastewkaL KA, Klemenz A, Gumbsch P et al (2013) Screened empirical bond-order potentials for Si-C. Phys Rev B 87(20):205410. https://doi.org/10.1103/PhysRevB.87.205410 [48] Pizzagalli L, Godet J, Guénolé J et al (2013) A new parametrization of the Stillinger-Weber potential for an improved description of defects and plasticity of silicon. J Phys Condens Matter 25(5):055801. https://doi.org/10.1088/0953-8984/25/5/055801 |