[1] Liu W, Placke T, Chau KT et al (2022) Overview of batteries and battery management for electric vehicles. Energy Rep 8:4058-4084 [2] Berjoza D, Jurgena I (2017) Effects of change in the weight of electric vehicles on their performance characteristics. Agron Res 15:952-963 [3] Shaffer B, Auffhammer M, Samaras C et al (2021) Make electric vehicles lighter to maximize climate and safety benefits. Nature 598:254-256 [4] Hooftman N, Messagie M, Joint F et al (2018) In-life range modularity for electric vehicles: the environmental impact of a range-extender trailer system. NATO Adv Sci Inst Ser E Appl Sci 8:1016. https://doi.org/10.3390/app8071016 [5] Fu W, Turcheniuk K, Naumov O et al (2021) Materials and technologies for multifunctional, flexible or integrated supercapacitors and batteries. Mater Today 48:176-197 [6] Wu F, Liu M, Li Y et al (2021) High-mass-loading electrodes for advanced secondary batteries and supercapacitors. Electrochem Energy R 4:382-446 [7] Danzi F, Salgado RM, Oliveira JE et al (2021) Structural batteries: a review. Molecules 26:2203. https://doi.org/10.3390/molecules26082203 [8] Asp LE, Bouton K, Carlstedt D et al (2021) A structural battery and its multifunctional performance. Adv Energy Sustain Res 2:2000093. https://doi.org/10.1002/aesr.202000093 [9] Snyder JF, Wong EL, Hubbard CW et al (2009) Evaluation of commercially available carbon fibers, fabrics, and papers for potential use in multifunctional energy storage applications. J Electrochem Soc 156:A215. https://doi.org/10.1149/1.3065070 [10] Asp LE, Johansson M, Lindbergh G et al (2019) Structural battery composites: a review. Funct Compos Struct 1:042001. https://doi.org/10.1088/2631-6331/ab5571 [11] Galos J, Pattarakunnan K, Best AS et al (2021) Energy storage structural composites with integrated lithium-ion batteries: a review. Adv Mater Technol 6:2001059. https://doi.org/10.1002/admt.202001059 [12] Thomas JP, Qidwai MA (2005) The design and application of multifunctional structure-battery materials systems. JOM 57:18-24 [13] Ladpli P, Nardari R, Kopsaftopoulos F et al (2019) Multifunctional energy storage composite structures with embedded lithium-ion batteries. J Power Sources 414:517-529 [14] Liu P, Sherman E, Jacobsen A (2009) Design and fabrication of multifunctional structural batteries. J Power Sources 189:646-650 [15] Kohlmeyer RR, Blake AJ, Hardin JO et al (2016) Composite batteries: a simple yet universal approach to 3D printable lithium-ion battery electrodes. J Mater Chem A Mater Energy Sustain 4:16856-16864 [16] Maurel A, Grugeon S, Armand M et al (2020) Overview on lithium-Ion battery 3D-printing by means of material extrusion. ECS Trans 98:3. https://doi.org/10.1149/09813.0003ecst [17] Maurel A, Martinez AC, Grugeon S et al (2021) Toward high resolution 3D printing of shape-conformable batteries via vat photopolymerization: review and perspective. IEEE Access 9:140654-140666 [18] Maurel A, Martinez AC, Dornbusch DA et al (2023) What would battery manufacturing look like on the moon and mars? ACS Energy Lett 8:1042-1049 [19] Narita K, Saccone MA, Sun Y et al (2022) Additive manufacturing of 3D batteries: a perspective. J Mater Res 37:1535-1546 [20] Maurel A, Pavone A, Stano G et al (2023) Manufacturing-oriented review on 3D printed lithium-ion batteries fabricated using material extrusion. Virtual Phys Prototyp 18:e2264281. https://doi.org/10.1080/17452759.2023.2264281 [21] Martinez AC, Schiaffino EM, Aranzola AP et al (2023) Multiprocess 3D printing of sodium-ion batteries via vat photopolymerization and direct ink writing. J Phys Energy 5:045010. https://doi.org/10.1088/2515-7655/acf958 [22] Maurel A, Martinez AC, Chavari SB et al (2023) 3D printed TiO2 negative electrodes for sodium-ion and lithium-ion batteries using vat photopolymerization. J Electrochem Soc 170:10. https://doi.org/10.1149/1945-7111/ad0420 [23] Geng Q, Wang D, Chen P et al (2019) Ultrafast multi-focus 3-D nano-fabrication based on two-photon polymerization. Nat Commun 10:2179. https://doi.org/10.1038/s41467-019-10249-2 [24] Nohut S, Schwentenwein M (2022) Vat photopolymerization additive manufacturing of functionally graded materials: a review. J Mater Process Manuf Sci 6:17. https://doi.org/10.3390/jmmp6010017 [25] Lodes MA, Guschlbauer R, Körner C (2015) Process development for the manufacturing of 99.94% pure copper via selective electron beam melting. Mater Lett 143:298-301 [26] Imai K, Ikeshoji TT, Sugitani Y et al (2020) Densification of pure copper by selective laser melting process. Mech Eng J 7:2. https://doi.org/10.1299/mej.19-00272 [27] Ott J, Burghardt A, Britz D et al (2021) Microstructural analysis as a requirement for sinter-based additive manufacturing of highly conductive copper. Pract Metallogr 59:434-444 [28] Bai Y, Williams CB (2015) An exploration of binder jetting of copper. Rapid Prototyping J 21:177-185 [29] Mooraj S, Welborn SS, Jiang S et al (2020) Three-dimensional hierarchical nanoporous copper via direct ink writing and dealloying. Scr Mater 177:146-150 [30] Maurel A, Kim H, Russo R et al (2021) Ag-coated Cu/polylactic acid composite filament for lithium and sodium-ion battery current collector three-dimensional printing via thermoplastic material extrusion. Front Energy Res 9:651041. https://doi.org/10.3389/fenrg.2021.651041 [31] Jiang Q, Zhang P, Yu Z et al (2021) A review on additive manufacturing of pure copper. Coat World 11:740. https://doi.org/10.3390/coatings11060740 [32] Steyrer B, Busetti B, Harakály G et al (2018) Hot lithography vs. room temperature DLP 3D-printing of a dimethacrylate. Addit Manuf 21:209-214 [33] Yugang D, Yuan Z, Yiping T et al (2011) Nano-TiO2-modified photosensitive resin for RP. Rapid Prototyping J 17:247-252 [34] Hinczewski C, Corbel S, Chartier T (1998) Ceramic suspensions suitable for stereolithography. J Eur Ceram Soc 18:583-590 [35] Yee DW, Citrin MA, Taylor ZW et al (2021) Hydrogel-based additive manufacturing of lithium cobalt oxide. Adv Mater Technol 6(2):2000791. https://doi.org/10.1002/admt.202000791 [36] Saccone MA, Gallivan RA, Narita K et al (2022) Additive manufacturing of micro-architected metals via hydrogel infusion. Nature 612(7941):685-690 [37] Manogharan G, Yelamanchi B, Aman R et al (2016) Experimental study of disruption of columnar grains during rapid solidification in additive manufacturing. JOM 68:842-849 [38] Martinez AC, Maurel A, Aranzola AP et al (2022) Additive manufacturing of LiNi1/3Mn1/3Co1/3O2 battery electrode material via vat photopolymerization precursor approach. Sci Rep 12:19010. https://doi.org/10.1038/s41598-022-22444-1 [39] Liu S, Wang Y-M, Han J (2017) Fluorescent chemosensors for copper(II) ion: structure, mechanism and application. J Photochem Photobiol C Photochem Rev 32:78-103. [40] Keely WM, Maynor HW (1963) Thermal studies of nickel, cobalt, lron and copper oxides and nitrates. J Chem Eng Data 8:297-300 [41] Yi F, DeLisio JB, Nguyen N et al (2017) High heating rate decomposition dynamics of copper oxide by nanocalorimetry-coupled time-of-flight mass spectrometry. Chem Phys Lett 689:26-29 [42] L’vov BV (2000) Mechanism of carbothermal reduction of iron, cobalt, nickel and copper oxides. Thermochim Acta 360:109-120 [43] McLaughlin KK, Clegg WJ (2008) Deformation underneath low-load indentations in copper. J Phys D Appl Phys 41:074007. https://doi.org/10.1088/0022-3727/41/7/074007 [44] Ryspayeva A, Jones TDA, Esfahani MN et al (2019) Selective electroless copper deposition by using photolithographic polymer/ag nanocomposite. IEEE Trans Electron Devices 66:4. https://doi.org/10.1109/TED.2019.2897258 [45] Timoshevskii V, Ke Y, Guo H et al (2008) The influence of surface roughness on electrical conductance of thin Cu films: an ab initio study. J Appl Phys 103:113705. https://doi.org/10.1063/1.2937188 [46] Kong LW, Bai W, Guo AG (2012) Effects of cracks on the electrical conductivity of a fissured laterite: a combined experimental and statistical study. Geotech Test J 35:20120070. https://doi.org/10.1520/gtj20120070 [47] Kanamura K, Goto A, Hamagami J et al (2000) Electrophoretic fabrication of positive electrodes for rechargeable lithium batteries. Electrochem Solid-State Lett 3(6):259. https://doi.org/10.1149/1.1391118 [48] Dashairya L, Das D, Saha P (2020) Electrophoretic deposition of antimony/reduced graphite oxide hybrid nanostructure: a stable anode for lithium-ion batteries. Mater Today Commun 24:101189. https://doi.org/10.1016/j.mtcomm.2020.101189 [49] Esper JD, Helmer A, Wu Y et al (2021) Electrophoretic deposition of out-of-plane oriented active material for lithium-ion batteries. Energy Technol 9(4):2000936. https://doi.org/10.1002/ente.202000936 [50] Han Y, Ye L, Boateng B et al (2019) Direct electrophoretic deposition of an ultra-strong separator on an anode in a surfactant-free colloidal system for lithium ion batteries. J Mater Chem A Mater Energy Sustain 7(4):1410-1417 [51] Boccaccini AR, Dickerson JH (2013) Electrophoretic deposition: fundamentals and applications. J Phys Chem B 117:1501. https://doi.org/10.1021/jp211212y [52] Mazor H, Golodnitsky D, Burstein L et al (2011) Electrophoretic deposition of lithium iron phosphate cathode for thin-film 3D-microbatteries. J Power Sources 198:264-272 [53] Hajizadeh A, Shahalizade T, Riahifar R et al (2022) Electrophoretic deposition as a fabrication method for Li-ion battery electrodes and separators—a review. J Power Sources 535:231448. https://doi.org/10.1016/j.jpowsour.2022.231448 [54] Martinez AC, Rigaud S, Grugeon S et al (2022) Chemical reactivity of lithium difluorophosphate as electrolyte additive in LiNi0.6Co0.2Mn0.2O2/graphite cells. Electrochim Acta 426:140765. https://doi.org/10.1016/j.electacta.2022.140765 [55] Dusoulier L, Cloots R, Vertruyen B et al (2011) YBa2Cu3O7-x dispersion in iodine acetone for electrophoretic deposition: surface charging mechanism in a halogenated organic media. J Eur Ceram Soc 31:1075-1086 [56] Lin YX, Liu Z, Leung K et al (2016) Connecting the irreversible capacity loss in Li-ion batteries with the electronic insulating properties of solid electrolyte interphase (SEI) components. J Power Sources 309:221-230 [57] Asenbauer J, Eisenmann T, Kuenzel M et al (2020) The success story of graphite as a lithium-ion anode material—fundamentals, remaining challenges, and recent developments including silicon (oxide) composites. Sustain Energy Fuels 4(11):5387-5416 [58] Maurel A (2020) Thermoplastic composite filaments formulation and 3D-printing of a lithium-ion battery via fused deposition modeling. Dissertation, Université de Picardie Jules Verne, Amiens [59] Grugeon S, Laruelle S, Herrera-Urbina R et al (2001) Particle size effects on the electrochemical performance of copper oxides toward lithium. J Electrochem Soc 148:A285. https://doi.org/10.1149/1.1353566 [60] McKelvey K, Brunet Cabré M, Esmeraldo Paiva A (2020) Continuum simulations for microscale 3D batteries. Curr Opin Electrochem 21:76-83 [61] Kühnelt H, Beutl A, Mastropierro F et al (2021) Structural batteries for aeronautic applications—state of the art, research gaps and technology development needs. Aerospace 9(1):7. https://doi.org/10.3390/aerospace9010007 [62] Maurel A, Martinez Maciel AC, Panier S et al (2021) Lithium-Ion battery 3D printing: from thermoplastic material extrusion to vat photopolymerization process. Meet Abst 2:30. https://doi.org/10.1149/MA2021-02130mtgabs [63] Carlstedt D, Runesson K, Larsson F et al (2022) Computational modelling of structural batteries accounting for stress-assisted convection in the electrolyte. Int J Solids Struct 238:111343. https://doi.org/10.1016/j.ijsolstr.2021.111343 [64] Martinez Maciel AC, Maurel A, Sreenivasan ST et al (2021) 3D printing of lthium-Ion battery components via vat photopolymerization. Meet Abstr 2:55. https://doi.org/10.1149/MA2021-02155mtgabs |