1. Yao C, Zhang J, Cui M et al (2020) Machining deformation prediction of large fan blades based on loading uneven residual stress. Int J Adv Manuf Technol 107(9/10):4345-4356 2. Guo M, Jiang X, Ye Y et al (2019) Investigation of redistribution mechanism of residual stress during multi-process milling of thinwalled parts. Int J Adv Manuf Technol 103(1/4):1459-1466 3. El-Khabeery MM, Fattouh M (1989) Residual stress distribution caused by milling. Int J Mach Tools Manuf 29(3):391-401 4. Wang J, Zhang D, Wu B et al (2017) Residual stresses analysis in ball end milling of nickel-based superalloy Inconel 718. Mater Res 20(6):1681-1689 5. Ji C, Sun S, Lin B et al (2018) Effect of cutting parameters on the residual stress distribution generated by pocket milling of 2219 aluminum alloy. Adv Mech Eng 10(12). https://doi.org/10.1177/1687814018813055 6. Kong X, Ding Z, Xu L et al (2019) Effects of milling parameters on distribution of residual stress during the milling of curved thin-walled parts. EPJ Web Conf 224:5009. https://doi.org/10.1051/epjconf/201922405009 7. Fuh KH, Wu CF (1995) A residual-stress model for the milling of aluminum alloy (2014-T6). J Mater Process Technol 51(1/4):87-105 8. Peng FY, Dong Q, Yan R et al (2016) Analytical modeling and experimental validation of residual stress in micro-end-milling. Int J Adv Manuf Technol 87(9/12):3411-3424 9. Yang D, Liu Z, Ren X et al (2016) Hybrid modeling with finite element and statistical methods for residual stress prediction in peripheral milling of titanium alloy Ti-6Al-4V. Int J Mech Sci 108/109:29-38 10. Wang J, Zhang D, Wu B et al (2017) Numerical and empirical modelling of machining-induced residual stresses in ball end milling of Inconel 718. Procedia CIRP 58:7-12 11. Zhou R, Yang W (2019) Correction to:analytical modeling of residual stress in helical end milling of nickel-aluminum bronze. Int J Adv Manuf Technol 100(1/4):1011 12. Qi H, Xie Z, Hong T et al (2017) CFD modelling of a novel hydrodynamic suspension polishing process for ultra-smooth surface with low residual stress. Powder Technol 317:320-328 13. Lin X, Wu D, Shan X et al (2018) Flexible CNC polishing process and surface integrity of blades. J Mech Sci Technol 32(6):2735-2746 14. Wu D, Wang H, Zhang K et al (2019) Research on flexible adaptive CNC polishing process and residual stress of blisk blade. Int J Adv Manuf Technol 103(5/8):2495-2513 15. Xiao G, Huang Y, Yin J (2017) An integrated polishing method for compressor blade surfaces. Int J Adv Manuf Technol 88(5/8):1723-1733 16. Yuan F, Liu C, Gu H et al (2019) Effects of mechanical polishing treatments on high cycle fatigue behavior of Ti-6Al-2Sn-4Zr-2Mo alloy. Int J Fatigue 121:55-62 17. Minguela J, Slawik S, Mücklich F et al (2020) Evolution of microstructure and residual stresses in gradually ground/polished 3Y-TZP. J Eur Ceram Soc 40(4):1582-1591 18. Sridhar BR, Devananda G, Ramachandra K et al (2003) Effect of machining parameters and heat treatment on the residual stress distribution in titanium alloy IMI-834. J Mater Process Technol 139(1/3):628-634 19. Bensely A, Venkatesh S, Mohan Lal D et al (2008) Effect of cryogenic treatment on distribution of residual stress in case carburized En 353 steel. Mater Sci Eng A 479(1/2):229-235 20. Paddea S, Francis JA, Paradowska AM et al (2012) Residual stress distributions in a P91 steel-pipe girth weld before and after post weld heat treatment. Mater Sci Eng A 534:663-672 21. Dong P, Song S, Zhang J (2014) Analysis of residual stress relief mechanisms in post-weld heat treatment. Int J Press Vessels Pip 122:6-14 22. Araghchi M, Mansouri H, Vafaei R et al (2017) A novel cryogenic treatment for reduction of residual stresses in 2024 aluminum alloy. Mater Sci Eng A 689:48-52 23. Zhang Z, Ge P, Zhao GZ (2017) Numerical studies of post weld heat treatment on residual stresses in welded impeller. Int J Press Vessels Pip 153:1-14 24. Bai Q, Feng H, Si LK et al (2019) A novel stress relaxation modeling for predicting the change of residual stress during annealing heat treatment. Metall Mater Trans A 50(12):5750-5759 25. Fu Y, Gao H, Wang X et al (2017) Machining the integral impeller and blisk of aero-engines:a review of surface finishing and strengthening technologies. Chin J Mech Eng 30(3):528-543 26. Kacaras A, Gibmeier J, Zanger F et al (2018) Influence of rotational speed on surface states after stream finishing. Procedia CIRP 71:221-226 27. Luo S, Zhou L, Nie X et al (2019) The compound process of laser shock peening and vibratory finishing and its effect on fatigue strength of Ti-3.5Mo-6.5Al-1.5Zr-0.25Si titanium alloy. J Alloy Compd 783:828-835 28. Wong BJ, Majumdar K, Ahluwalia K et al (2019) Effects of high frequency vibratory finishing of aerospace components. J Mech Sci Technol 33(4):1809-1815 29. Zanger F, Kacaras A, Neuenfeldt P et al (2019) Optimization of the stream finishing process for mechanical surface treatment by numerical and experimental process analysis. CIRP Ann 68(1):373-376 30. Kim T, Lee JH, Lee H et al (2010) An area-average approach to peening residual stress under multi-impacts using a three-dimensional symmetry-cell finite element model with plastic shots. Mater Des 31(1):50-59 31. Ghasemi A, Hassani-Gangaraj SM, Mahmoudi AH et al (2016) Shot peening coverage effect on residual stress profile by FE random impact analysis. Surf Eng 32(11):861-870 32. Mahmoudi AH, Ghasemi A, Farrahi GH et al (2016) A comprehensive experimental and numerical study on redistribution of residual stresses by shot peening. Mater Des 90:478-487 33. Zhan K, Jiang CH, Ji V (2013) Uniformity of residual stress distribution on the surface of S30432 austenitic stainless steel by different shot peening processes. Mater Lett 99:61-64 34. Sherafatnia K, Farrahi GH, Mahmoudi AH et al (2016) Experimental measurement and analytical determination of shot peening residual stresses considering friction and real unloading behavior. Mater Sci Eng A 657:309-321 35. Hayashi M, Okido S, Suzuki H (2020) Residual stress distribution in water jet peened type 304 stainless steel. Quantum Beam Sci 4(2):18. https://doi.org/10.3390/qubs4020018 36. Lai HH, Cheng HC, Lee CY et al (2020) Effect of shot peening time on d/c residual stress profiles of AISI 304 weld. J Mater Process Technol 284:116747. https://doi.org/10.1016/j.jmatprotec.2020.116747 37. Yao C, Wu D, Ma L et al (2016) Surface integrity evolution and fatigue evaluation after milling mode, shot-peening and polishing mode for TB6 titanium alloy. Appl Surf Sci 387:1257-1264 38. Tan L, Zhang D, Yao C et al (2017) Evolution and empirical modeling of compressive residual stress profile after milling, polishing and shot peening for TC17 alloy. J Manuf Process 26:155-165 39. Wu D, Zhang D, Yao C (2018) Effect of turning and surface polishing treatments on surface integrity and fatigue performance of nickel-based alloy GH4169. Metals 8(7):549. https://doi.org/10.3390/met8070549 40. Sridhar BR, Nafde WG, Padmanabhan KA (1992) Effect of shot peening on the residual stress distribution in two commercial titanium alloys. J Mater Sci 27(21):5783-5788 41. Zhang J, Yao C, Tan L et al (2021) Shot peening parameters optimization based on residual stress-induced deformation of large fan blades. Thin-Walled Struct 161(1):107467. https://doi.org/10.1016/j.tws.2021.107467 |