1. Guo B, Sun J, Hua Y et al (2020) Femtosecond laser micro/nano-manufacturing:theories, measurements, methods, and applications. Nanomanuf Metrol 3:26-67 2. Bravo H, Szapiro BT, Wachulak PW et al (2012) Demonstration of nanomachining with focused extreme ultraviolet laser beams. IEEE J Sel Top Quantum Electron 18:443-448 3. Joe DJ, Kim S, Park JH et al (2017) Laser-material interactions for flexible applications. Adv Mater 29(26):1606586. https://doi.org/10.1002/adma.201606586 4. Attwood D, Sakdinawat A (2017) X-rays and extreme ultraviolet radiation:principles and applications. Cambridge University Press, New York 5. Shugaev MV, Wu C, Armbruster O et al (2016) Fundamentals of ultrafast laser-material interaction. MRS Bull 41:960-968 6. Cui H, Zhao Y, Jiang S et al (2013) Experiment of Si target ablation with soft X-ray laser operating at a wavelength of 46.9 nm. Opt Laser Technol 46:20-24 7. Thorstensen J, Foss SE (2013) Investigation of depth of laser damage to silicon as function of wavelength and pulse duration. Energy Procedia 38:794-800 8. Juha L, Bittner M, Chvostova D et al (2005) XUV-laser induced ablation of PMMA with nano-, pico-, and femtosecond pulses. J Electron Spectrosc Relat Phenom 144/147:929-932 9. Ionin AA, Kudryashov SI, Seleznev LV et al (2013) Thermal melting and ablation of silicon by femtosecond laser radiation. J Exp Theor Phys 116:347-362 10. Shaheen M, Gagnon J, Fryer B (2019) Studies on laser ablation of silicon using near IR picosecond and deep UV nanosecond lasers. Opt Lasers Eng 119:18-25 11. Norman G, Starikov S, Stegailov V et al (2012) Nanomodification of gold surface by picosecond soft X-ray laser pulse. J Appl Phys 112:966-985 12. Tanaka N, Masuda M, Deguchi R et al (2015) Characterization of material ablation driven by laser generated intense extreme ultraviolet light. Appl Phys Lett 25(11):270. https://doi.org/10.1063/1.4930958 13. Carbone F, Baum P, Rudolf P et al (2008) Structural preablation dynamics of graphite observed by ultrafast electron crystallography. Phys Rev Lett 100(3):35501. https://doi.org/10.1103/PHYSREVLETT.100.035501 14. Sciaini G, Miller RJD (2011) Femtosecond electron diffraction:heralding the era of atomically resolved dynamics. Rep Prog Phys 74(9):96101-96136 15. Stojanovic N, von der Linde D, Sokolowski-Tinten K et al (2006) Ablation of solids using a femtosecond extreme ultraviolet free electron laser. Appl Phys Lett 89(24):241909. https://doi.org/10.1063/1.2405398 16. Krzywinski J, Sobierajski R, Jurek M et al (2007) Conductors, semiconductors, and insulators irradiated with short-wavelength free-electron laser. J Appl Phys 101(4):043107. https://doi.org/10.1063/1.2434989 17. Amouye FA, Förster DJ, Ghorbanfekr H et al (2021) Atomistic simulation of ultra-short pulsed laser ablation of metals with single and double pulses:an investigation of the re-deposition phenomenon. Appl Surf Sci 537:147775. https://doi.org/10.1016/j.apsusc.2020.147775 18. Wu C, Zhigilei LV (2014) Microscopic mechanisms of laser spallation and ablation of metal targets from large-scale molecular dynamics simulations. Appl Phys A 114:11-32 19. Wu C, Christensen MS, Savolainen JM et al (2015) Generation of subsurface voids and a nanocrystalline surface layer in femtosecond laser irradiation of a single-crystal Ag target. Phys Rev B 91(3):035413. https://doi.org/10.1103/PhysRevB.91.035413 20. Kan Z, Zhu Q, Ren H et al (2019) Femtosecond laser-induced thermal transport in silicon with liquid cooling bath. Materials 12(13):2043. https://doi.org/10.3390/ma12132043 21. Fang FZ, Zhang N, Guo D et al (2019) Towards atomic and close-to-atomic scale manufacturing. Int J Extreme Manuf 1:012001. https://doi.org/10.1088/2631-7990/ab0dfc 22. Fang FZ (2020) On atomic and close-to-atomic scale manufacturing-development trend of manufacturing technology. China Mech Eng 31:1009-1021 23. Mathew PT, Rodriguez BJ, Fang FZ (2020) Atomic and close-to-atomic scale manufacturing:A review on atomic layer removal methods using atomic force microscopy. Nanomanuf Metrol 16:1-20 24. Rutherford AM, Duffy DM (2007) The effect of electron-ion interactions on radiation damage simulations. J Phys Condens Matter 19(49):496201. https://doi.org/10.1088/0953-8984/19/49/496201 25. Xiong L, Chen Y, Beyerlein I et al (2021) Multiscale modeling of interface-mediated mechanical, thermal, and mass transport in heterogeneous materials:perspectives and applications. J Mater Res 36:2601-2614 26. Khara GS, Murphy ST, Daraszewicz SL et al (2016) The influence of the electronic specific heat on swift heavy ion irradiation simulations of silicon. J Phys Condens Matter 28:395201. https://doi.org/10.1088/0953-8984/28/39/395201 27. Stillinger FH, Weber TA (1985) Computer simulation of local order in condensed phases of silicon. Phys Rev B 31:5262. https://doi.org/10.1103/PhysRevB.31.5262 28. Herrmann RFW, Gerlach J, Campbell EEB (1988) Ultrashort pulse laser ablation of silicon:an MD simulation study. Appl Phys A 66(1):35-42 29. Plimpton S (1955) Fast parallel algorithms for short-range molecular dynamics. J Comput Phys 117:1-19 30. Stukowski A (2010) Visualization and analysis of atomistic simulation data with OVITO:the open visualization tool. Modell Simul Mater Sci Eng 18:015012 31. Cui HY (2018) Research on interaction of capillary discharge 46.9 nm laser with solid targets. Dissertation, Harbin Institute of Technology 32. Li Y, Shuai M, Zhang J et al (2018) Molecular dynamics investigation of residual stress and surface roughness of cerium under diamond cutting. Micromachines 9(8):386. https://doi.org/10.3390/mi9080386 33. Levitas VI, Chen H, Xiong L (2017) Lattice instability during phase transformations under multiaxial stress:modified transformation work criterion. Phys Rev B 96(5):054118. https://doi.org/10.1103/PhysRevB.96.054118 34. Levitas VI, Chen H, Xiong L (2017) Triaxial-stress-induced homogeneous hysteresis-free first-order phase transformations with stable intermediate phases. Phys Rev Lett 118(2):025701. https://doi.org/10.1103/PhysRevLett.118.025701 35. Chen H, Levitas VI, Xiong L (2019) Amorphization induced by 60° shuffle dislocation pileup against different grain boundaries in silicon bicrystal under shear. Acta Mater 179:287-295 36. Watanabe K, Ishizaka Y, Ohmura E et al (2000) Analysis of laser ablation process in semiconductor due to ultrashort-pulsed laser with molecular dynamics simulation. Proc SPIE Int Soc Opt Eng 3933:46-55 37. Wan DP, Wang J, Mathew P (2011) Energy deposition and non-thermal ablation in femtosecond laser grooving of silicon. Mach Sci Technol 15:263-283 38. Norman GE, Starikov SV, Stegailov VV (2012) Atomistic simulation of laser ablation of gold:effect of electronic pressure. J Exp Theor Phys 114(5):792-800 39. Amasuga H, Nakamura M, Mera Y et al (2002) The atomic processes of ultraviolet laser-induced etching of chlorinated silicon (1 1 1) surface. Appl Surf Sci 197/198:577-580 40. Yajima A, Nakamura Y, Mera Y et al (2005) STM observations of photo-induced jumps of chlorine atoms chemisorbed on Si(111)-(7×7) surface. Surf Sci 593(1/3):155-160 |