1. Ladj A, Varnier C, Tayeb FBS (2016) IPro-GA: an integrated prognostic based GA for scheduling jobs and predictive maintenance in a single multifunctional machine. IFAC-PapersOnLine 49(12):1821–1826 2. Mokhtari H, Mozdgir A, Kamal Abadi IN (2012) A reliability/availability approach to joint production and maintenance scheduling with multiple preventive maintenance services. Int J Prod Res 50(20):5906–5925 3. von Hoyningen-Huene W, Kiesmüller GP (2015) Maintenance and production scheduling on a single machine with stochastic failures. Dissertation, Keele University 4. Boufellouh R, Belkaid F (2020) Bi-objective optimization algorithms for joint production and maintenance scheduling under a global resource constraint: application to the permutation flow shop problem. Comput Oper Res 122:104943. https://doi.org/10.1016/j.cor.2020.104943 5. Salmasnia A, Mirabadi-Dastjerd D (2017) Joint production and preventive maintenance scheduling for a single degraded machine by considering machine failures. TOP 25:544–578 6. Pan E, Liao W, Xi L (2010) Single-machine-based production scheduling model integrated preventive maintenance planning. Int J Adv Manuf Technol 50:365–375 7. Aghezzaf EH, Jamali MA, Ait-Kadi D (2007) An integrated production and preventive maintenance planning model. Eur J Oper Res 181(2):679–685 8. Sbihi M, Varnier C (2008) Single-machine scheduling with periodic and flexible periodic maintenance to minimize maximum tardiness. Comput Ind Eng 55(4):830–840 9. Cassady CR, Kutanoglu E (2003) Minimizing job tardiness using integrated preventive maintenance planning and production scheduling. IIE Trans 35(6):503–513 10. Zied H, Sofiene D, Nidhal R (2011) Optimal integrated maintenance/production policy for randomly failing systems with variable failure rate. Int J Prod Res 49(19):5695–5712 11. Xiao L, Song S, Chen X et al (2016) Joint optimization of production scheduling and machine group preventive maintenance. Reliab Eng Syst Saf 146:68–78 12. Liu Q, Dong M, Chen FF (2018) Single-machine-based joint optimization of predictive maintenance planning and production scheduling. Robot Comput Integr Man 51:238–247 13. Pan E, Liao W, Xi L (2012) A joint model of production scheduling and predictive maintenance for minimizing job tardiness. Int J Adv Manuf Technol 60:1049–1061 14. Liao W, Pan E, Xi L (2007) Dynamic preventive maintenance policy based on health index. In: The proceedings of 2007 international conference on industrial engineering and engineering management. https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=4419328 15. Ruiz-Sarmiento JR, Monroy J, Moreno FA et al (2020) A predictive model for the maintenance of industrial machinery in the context of industry 4.0. Eng Appl Artif Intell 87: 103289. https://doi.org/10.1016/j.engappai.2019.103289 16. Ferreiro S, Konde E, Fernández S et al (2016) Industry 4.0: predictive intelligent maintenance for production equipment. In: PHM society European conference, vol 3, no 1. https://doi.org/10.36001/phme.2016.v3i1.1667 17. Efthymiou K, Papakostas N, Mourtzis D et al (2012) On a predictive maintenance platform for production systems. Proced CIRP 3:221–226 18. Nguyen KT, Medjaher K (2019) A new dynamic predictive maintenance framework using deep learning for failure prognostics. Reliab Eng Syst Saf 188:251–262 19. Diez-Olivan A, Del Ser J, Galar D et al (2019) Data fusion and machine learning for industrial prognosis: trends and perspectives towards Industry 4.0. Inf Fusion 50:92–111 20. Romero-Silva R, Santos J, Hurtado M (2015) A framework for studying practical production scheduling. Prod Plan Control 26:438–450 21. Nzukam C, Voisin A, Levrat E et al (2018) Opportunistic maintenance scheduling with stochastic opportunities duration in a predictive maintenance strategy. IFAC-PapersOnLine 51(11):453–458 22. Li Z, Wang Y, Wang KS (2017) Intelligent predictive maintenance for fault diagnosis and prognosis in machine centers: industry 4.0 scenario. Adv Manuf 5(4):377–387 23. Chiarini A, Belvedere V, Grando A (2020) Industry 4.0 strategies and technological developments. An exploratory research from Italian manufacturing companies. Prod Plan Control 31(16):1385–1398 24. Melesse TY, Di Pasquale V, Riemma S (2020) Digital twin models in industrial operations: a systematic literature review. Proced Manuf 42:267–272 25. Aivaliotis P, Georgoulias K, Arkouli Z et al (2019) Methodology for enabling digital twin using advanced physics-based modelling in predictive maintenance. Proced CIRP 81:417–422 26. Liu Z, Meyendorf N, Mrad N (2018) The role of data fusion in predictive maintenance using digital twin. In: AIP conference proceedings, vol 1949, no 1. AIP Publishing LLC, p 020023 27. Rødseth H, Schjølberg P, Marhaug A (2017) Deep digital maintenance. Adv Manuf 5(4):299–310 28. Lee J, Bagheri B, Kao HA (2015) A cyber-physical systems architecture for industry 4.0-based manufacturing systems. Manuf Lett 3:18–23 29. Archetti F, Arosio G, Candelieri A et al (2014) Smart data driven maintenance: improving damage detection and assessment on aerospace structures. In: 2014 IEEE metrology for aerospace (MetroAeroSpace), IEEE, pp 101–106 30. Witten IH, Frank E (2002) Data mining: practical machine learning tools and techniques with Java implementations. ACM SIGMOD Rec 31:76–77 31. Palmer R (2013) Maintenance planning and scheduling handbook. McGraw-Hill, New York 32. Li N, Lei Y, Guo L et al (2017) Remaining useful life prediction based on a general expression of stochastic process models. IEEE Trans Ind Electron 64:5709–5718. https://doi.org/10.1109/TIE.2017.2677334 33. Le Son K, Fouladirad M, Barros A et al (2013) Remaining useful life estimation based on stochastic deterioration models: a comparative study. Reliab Eng Syst Saf 112:165–175 34. Elattar HM, Elminir HK, Riad AM (2016) Prognostics: a literature review. Complex Intell Syst 2(2):125–154 |