Advances in Manufacturing ›› 2022, Vol. 10 ›› Issue (1): 1-23.doi: 10.1007/s40436-021-00375-w
• ARTICLES • 下一篇
Y. K. Liu, S. K. Ong, A. Y. C. Nee
收稿日期:
2021-06-14
修回日期:
2021-07-26
出版日期:
2022-03-25
发布日期:
2022-02-23
通讯作者:
S. K. Ong
E-mail:mpeongsk@nus.edu.sg
Y. K. Liu, S. K. Ong, A. Y. C. Nee
Received:
2021-06-14
Revised:
2021-07-26
Online:
2022-03-25
Published:
2022-02-23
Contact:
S. K. Ong
E-mail:mpeongsk@nus.edu.sg
摘要: Digital twin (DT) has garnered attention in both industry and academia. With advances in big data and internet of things (IoTs) technologies, the infrastructure for DT implementation is becoming more readily available. As an emerging technology, there are both potential and challenges. DT is a promising methodology to leverage the modern data explosion to aid engineers, managers, healthcare experts and politicians in managing production lines, patient health and smart cities by providing a comprehensive and high fidelity monitoring, prognostics and diagnostics tools. New research and surveys into the topic are published regularly, as interest in this technology is high although there is a lack of standardization to the definition of a DT. Due to the large amount of information present in a DT system and the dual cyber and physical nature of a DT, augmented reality (AR) is a suitable technology for data visualization and interaction with DTs. This paper seeks to classify different types of DT implementations that have been reported, highlights some researches that have used AR as data visualization tool in DT, and examines the more recent approaches to solve outstanding challenges in DT and the integration of DT and AR.
The full text can be downloaded at https://link.springer.com/article/10.1007/s40436-021-00375-w
Y. K. Liu, S. K. Ong, A. Y. C. Nee. State-of-the-art survey on digital twin implementations[J]. Advances in Manufacturing, 2022, 10(1): 1-23.
Y. K. Liu, S. K. Ong, A. Y. C. Nee. State-of-the-art survey on digital twin implementations[J]. Advances in Manufacturing, 2022, 10(1): 1-23.
1. Tao F, Sui F, Liu A et al (2018) Digital twin-driven product design framework. Int J Prod Res 57(12):3935-3953 2. Tao F, Zhang H, Liu A et al (2018) Digital twin in industry:state-of-the-art. IEEE Trans Industr Inf 15(4):2405-2415 3. Rosen R, Von Wichert G, Lo G et al (2015) About the importance of autonomy and digital twins for the future of manufacturing. IFAC-Papers OnLine 28(3):567-572 4. Luo W, Hu T, Zhu W et al (2018) Digital twin modeling method for CNC machine tool. In:The 15th IEEE international conference on networking, sensing and control (ICNSC 2018), Zhuhai, China, pp 1-4. https://doi.org/10.1109/ICNSC.2018.8361285 5. Tao F, Zhang M, Liu Y et al (2018) Digital twin driven prognostics and health management for complex equipment. CIRP Ann 67(1):169-172 6. Soon KH, Khoo VHS (2017) Citygml modelling for Singapore 3D national mapping. In:The 12th 3D geoinfo conference, Melbourne, Australia, pp 37-42. https://doi.org/10.5194/isprs-archives-XLII-4-W7-37-2017 7. Mamatha MN (2019) Design of single patient care monitoring system and robot BT-cyber-physical systems and digital twins. In:The 16th international conference on remote engineering and virtual instrumentation (REV2019), Bengaluru, India, pp 203-216. https://doi.org/10.1007/978-3-030-23162-0_19 8. Doukas C, Maglogiannis I (2012) Bringing IoT and cloud computing towards pervasive healthcare. In:Proceedings of the 6th international conference on innovative mobile and internet services in ubiquitous computing, Palermo, Italy, pp 922-926. https://doi.org/10.1109/IMIS.2012.26 9. Cimino C, Negri E, Fumagalli L (2019) Review of digital twin applications in manufacturing. Comput Ind 113:103130. https://doi.org/10.1016/j.compind.2019.103130 10. Shafto M, Conroy M, Doyle R et al (2012) Modeling, simulation, information technology & processing roadmap. Technology Area 11, National Aeronautics and Space Administration, pp 1-38 11. Grieves M (2015) Digital twin:manufacturing excellence through virtual factory replication. Digital Twin White Paper 12. Al-Kodmany K (2006) Public participation:technology and democracy. J Archit Educ 53(4):220-228 13. Peddie J (2017) Augmented reality:where we all live. Springer International Publishing, New York, pp 1-28. https://doi.org/10.1007/978-3-319-54502-8 14. Scurati GW, Gattullo M, Fiorentino M et al (2018) Converting maintenance actions into standard symbols for augmented reality applications in Industry 4.0. Comput Ind 98:68-79 15. Stokes S (2001) Visual literacy in teaching and learning:a literature perspective. Electron J Integr Technol Educ 1(1):10-19 16. Mourtzis D, Vlachou E, Zogopoulos V et al (2017) Integrated production and maintenance scheduling through machine monitoring and augmented reality:an Industry 4.0 approach. In:IFIP international conference on advances in production management systems (APMS 2017), Hamburg, Germany, pp 354-362 17. Ong SK, Nee AYC (2004) Virtual and augmented reality applications in manufacturing. Springer-Verlag, London, pp 1-11. https://doi.org/10.1007/978-1-4471-3873-0 18. Wilhelm J, Beinke T, Freitag M (2020) Improving human-machine interaction with a digital twin adaptive automation in container unloading. In:Proceedings of the 7th international conference of dynamics in logistics, Bremen, Germany, pp 527-538. https://doi.org/10.1007/978-3-030-44783-0_49 19. Boschert S, Rosen R (2016) Digital twin-the simulation aspect. In:Hehenberger P, Bradley D (eds) Mechatronic futures, Springer, Cham, pp 59-74. https://doi.org/10.1007/978-3-319-32156-1_5 20. Durão LFCS, Haag S, Anderl R et al. (2018) Digital twin requirements in the context of Industry 4.0. In:IFIP international conference on product lifecycle management (PLM 2018), Turin, Italy, pp 204-212. https://doi.org/10.1007/978-3-030-01614-2_19 21. Grieves M, Vickers J (2017) Digital twin:mitigating unpredictable, undesirable emergent behavior in complex systems. In:Kahlen F, Flumerfelt S, Alve A (eds) Transdisciplinary perspectives on complex systems, Springer, Cham, pp 85-113. https://doi.org/10.1007/978-3-319-38756-7_4 22. Lu Q, Xie X, Heaton J et al (2020) From BIM towards digital twin:strategy and future development for smart asset management. In:Proceedings of the 10th workshop on service oriented, holonic and multi-agent manufacturing systems for industry of the future (SOHOMA 2020), Paris, France, pp 392-403. https://doi.org/10.1007/978-3-030-27477-1 23. Jones D, Snider C, Nassehi A et al (2020) Characterising the digital twin:a systematic literature review. CIRP J Manuf Sci Technol 29(A):36-52 24. Kritzinger W, Karner M, Traar G et al (2018) Digital twin in manufacturing:a categorical literature review and classification. IFAC-Papers OnLine 51(11):1016-1022 25. Fuller A, Fan Z, Day C et al (2020) Digital twin:enabling technologies, challenges and open research. IEEE Access 8:108952-108971 26. Lu Y, Liu C, Wang KIK et al (2020) Digital twin-driven smart manufacturing:connotation, reference model, applications and research issues. Robot Comput Integr Manuf 61:101837. https://doi.org/10.1016/j.rcim.2019.101837 27. Sivalingam K, Sepulveda M, Spring M et al (2018) A review and methodology development for remaining useful life prediction of offshore fixed and floating wind turbine power converter with digital twin technology perspective. In:The 2nd international conference on green energy and applications (ICGEA 2018), Singapore, pp 197-204. https://doi.org/10.1109/ICGEA.2018.8356292 28. Negri E, Fumagalli L, Macchi M (2017) A review of the roles of digital twin in CPS-based production systems. In:The 27th international conference on flexible automation and intelligent manufacturing (FAIM 2017), Modena, Italy, pp 939-948. https://doi.org/10.1016/j.promfg.2017.07.198 29. Scheibmeir J, Malaiya Y (2019) An API development model for digital twins. In:IEEE 19th international conference on software quality, reliability and security companion (QRS-C), Sofia, Bulgaria, pp 518-519. https://doi.org/10.1109/QRS-C.2019.00103 30. Zheng Y, Yang S, Cheng H (2019) An application framework of digital twin and its case study. J Ambient Intell Humaniz Comput 10(3):1141-1153 31. Alam KM, El Saddik A (2017) C2PS:a digital twin architecture reference model for the cloud-based cyber-physical systems. IEEE Access 5:2050-2062 32. Liu Y, Zhang L, Yang Y et al (2019) A novel cloud-based framework for the elderly healthcare services using digital twin. IEEE Access 7:49088-49101 33. Rodič B (2018) Creating the digital twin with general purpose simulation modelling tools. In:The 2nd international scientific conference on IT, tourism, economics, management and agriculture (ITEMA 2018), Graz, Austria, pp 20-25. https://doi.org/10.31410/itema.2018.20 34. Yun S, Park JH, Kim WT (2017) Data-centric middleware based digital twin platform for dependable cyber-physical systems. In:The 9th international conference on ubiquitous and future networks (ICUFN), Milan, pp 922-926. https://doi.org/10.1109/ICUFN.2017.7993933 35. Barboza D, De Oliveira W, Saraiva M et al (2019) DEMO:virtual reality digital twin for floating production storage and offloading (FPSO) units. In:The 21st symposium on virtual and augmented reality (SVR), Rio de Janeiro, Brazil, pp 31-32. https://doi.org/10.5753/svr_estendido.2019.8463 36. Fan C, Zhang C, Yahja A et al (2021) Disaster city digital twin:a vision for integrating artificial and human intelligence for disaster management. Int J Inf Manag 56:102049. https://doi.org/10.1016/j.ijinfomgt.2019.102049 37. Ayani M, Ganebäck M, Ng AHC (2018) Digital twin:applying emulation for machine reconditioning. In:The 51st CIRP conference on manufacturing systems, Stockholm, Sweden, pp 243-248. https://doi.org/10.1016/j.procir.2018.03.139 38. Nikolakis N, Alexopoulos K, Xanthakis E et al (2019) The digital twin implementation for linking the virtual representation of human-based production tasks to their physical counterpart in the factory-floor. Int J Comput Integr Manuf 32(1):1-12 39. Haag S, Anderl R (2018) Digital twin-proof of concept. Manuf Lett 15(B):64-66 40. Knapp GL, Mukherjee T, Zuback JS et al (2017) Building blocks for a digital twin of additive manufacturing. Acta Mater 135:390-399 41. West TD, Blackburn M (2017) Is digital thread/digital twin affordable? A systemic assessment of the cost of DoD's latest manhattan project. In:Complex adaptive systems conference with theme:engineering cyber physical systems, Chicago, Illinois, USA, pp 47-56. https://doi.org/10.1016/j.procs.2017.09.003 42. Qi Q, Tao F (2018) Digital twin and big data towards smart manufacturing and Industry 4.0:360 degree comparison. IEEE Access 6:3585-3593 43. Luo W, Hu T, Zhang C et al (2019) Digital twin for CNC machine tool:modeling and using strategy. J Ambient Intell Humaniz Comput 10(3):1129-1140 44. Uhlemann THJ, Lehmann C, Steinhilper R (2017) The digital twin:realizing the cyber-physical production system for Industry 4.0. In:The 24th CIRP conference on life cycle engineering, Kamakura, Japan, pp 335-340. https://doi.org/10.1016/j.procir.2016.11.152 45. Ding K, Chan FTS, Zhang X et al (2019) Defining a digital twin-based cyber-physical production system for autonomous manufacturing in smart shop floors. Int J Prod Res 57(20):6315-6334 46. Leng J, Zhang H, Yan D et al (2019) Digital twin-driven manufacturing cyber-physical system for parallel controlling of smart workshop. J Ambient Intell Humaniz Comput 10(3):1155-1166 47. Botkina D, Hedlind M, Olsson B et al (2018) Digital twin of a cutting tool. In:The 51st CIRP conference on manufacturing systems, Stockholm, Sweden, pp 215-218. https://doi.org/10.1016/j.procir.2018.03.178 48. Karve PM, Guo Y, Kapusuzoglu B et al (2020) Digital twin approach for damage-tolerant mission planning under uncertainty. Eng Fract Mech 225:106766. https://doi.org/10.1016/j.engfracmech.2019.106766 49. Schroeder GN, Steinmetz C, Pereira CE et al (2016) Digital twin data modeling with automation ML and a communication methodology for data exchange. IFAC-Papers OnLine 49(30):12-17 50. Zhang H, Liu Q, Chen X et al (2017) A digital twin-based approach for designing and multi-objective optimization of hollow glass production line. IEEE Access 5:26901-26911 51. Tao F, Cheng J, Qi Q et al (2018) Digital twin-driven product design, manufacturing and service with big data. Int J Adv Manuf Technol 94(9/12):3563-3576 52. Zhang M, Tao F, Nee AYC (2021) Digital twin enhanced dynamic job-shop scheduling. J Manuf Syst 58(B):146-156 53. Qi Q, Tao F, Hu T et al (2021) Enabling technologies and tools for digital twin. J Manuf Syst 58(B):3-21 54. Jain P, Poon J, Singh JP et al (2020) A digital twin approach for fault diagnosis in distributed photovoltaic systems. IEEE Trans Power Electron 35(1):940-956 55. Xu Y, Sun Y, Liu X et al (2019) A digital-twin-assisted fault diagnosis using deep transfer learning. IEEE Access 7:19990-19999 56. Hughes DJ, Keir S, Meggs C (2018) Digital twin methodology for compression moulded thermoplastic composite optimisation. In:Flow processes in composite materials (FPCM), Luleå, Sweden, pp 14-15 57. Iglesias D, Bunting P, Esquembri S et al (2017) Digital twin applications for the JET divertor. Fusion Eng Des 125:71-76 58. Söderberg R, Wärmefjord K, Carlson JS et al (2017) Toward a digital twin for real-time geometry assurance in individualized production. CIRP Ann 66:137-140 59. Brenner B, Hummel V (2017) Digital twin as enabler for an innovative digital shopfloor management system in the ESB logistics learning factory at Reutlingen-University. In:The 7th conference on learning factories (CLF 2017), Darmstadt, Germany, pp 198-205. https://doi.org/10.1016/j.promfg.2017.04.039 60. Xiang F, Zhang Z, Zuo Y et al (2019) Digital twin driven green material optimal-selection towards sustainable manufacturing. In:The 52nd CIRP conference on manufacturing systems (CMS), Ljubljana, Slovenia, pp 1290-1294. https://doi.org/10.1016/j.procir.2019.04.015 61. Madni A, Madni C, Lucero S (2019) Leveraging digital twin technology in model-based systems engineering. Systems 7(1):7. https://doi.org/10.3390/systems7010007 62. Gehrmann C, Gunnarsson M (2020) A digital twin based industrial automation and control system security architecture. IEEE Trans Industr Inf 16(1):669-680 63. Wang C, Erkorkmaz K, Mcphee J et al (2020) In-process digital twin estimation for high-performance machine tools with coupled multibody dynamics. CIRP Ann 69(1):321-324 64. Banerjee A, Dalal R, Mittal S et al (2017) Generating digital twin models using knowledge graphs for industrial production lines. In:Proceedings of the 2017 ACM on web science conference (WebSci'17), New York, USA, pp 425-430. https://doi.org/10.1145/3091478.3162383 65. Zhao G, Cao X, Xiao W et al (2019) Digital twin for NC machining using complete process information expressed by STEP-NC standard. In:Proceedings of the 2019 4th international conference on automation, control and robotics engineering (CACRE 2019), Shenzhen, China, pp 1-6. https://doi.org/10.1145/3351917.3351979 66. Vachalek J, Bartalsky L, Rovny O et al (2017) The digital twin of an industrial production line within the Industry 4.0 concept. In:The 21st international conference on process control (PC), Štrbské Pleso, Slovakia, pp 258-262. https://doi.org/10.1109/PC.2017.7976223 67. Ganguli R, Adhikari S (2020) The digital twin of discrete dynamic systems:initial approaches and future challenges. Appl Math Modell 77(2):1110-1128 68. Liu J, Zhou H, Tian G et al (2019) Digital twin-based process reuse and evaluation approach for smart process planning. Int J Adv Manuf Technol 100(5/8):1619-1634 69. Liu Q, Zhang H, Leng J et al (2019) Digital twin-driven rapid individualised designing of automated flow-shop manufacturing system. Int J Prod Res 57(12):3903-3919 70. Wang J, Ye L, Gao RX et al (2019) Digital twin for rotating machinery fault diagnosis in smart manufacturing. Int J Prod Res 57(12):3920-3934 71. Zheng P, Lin TJ, Chen CH et al (2019) A systematic design approach for service innovation of smart product-service systems. J Clean Prod 201:657-667 72. Tao F, Zhang M (2018) Digital twin shop-floor:a new shop-floor paradigm towards smart manufacturing. IEEE Access 5:20418-20427 73. Zhuang C, Liu J, Xiong H (2018) Digital twin-based smart production management and control framework for the complex product assembly shop-floor. Int J Adv Manuf Technol 96(1/4):1149-1163 74. Wang XV, Wang L (2019) Digital twin-based WEEE recycling, recovery and remanufacturing in the background of Industry 4.0. Int J Prod Res 57(12):3892-3902 75. El Saddik A (2018) Digital twins:the convergence of multimedia technologies. IEEE Multimed 25(2):87-92 76. Fang Y, Peng C, Lou P et al (2019) Digital-twin-based job shop scheduling toward smart manufacturing. IEEE Trans Industr Inf 15(12):6425-6435 77. Uhlemann THJ, Schock C, Lehmann C et al (2017) The digital twin:demonstrating the potential of real time data acquisition in production systems. In:The 7th conference on learning factories (CLF 2017), 4-5 April 2017, Darmstadt, Germany, pp 113-120. https://doi.org/10.1016/j.promfg.2017.04.043 78. Li C, Mahadevan S, Ling Y et al (2017) Dynamic Bayesian network for aircraft wing health monitoring digital twin. AIAA J 55(3):930-941 79. Zhang M, Zuo Y, Tao F (2018) Equipment energy consumption management in applications. In:IEEE 15th international conference on networking, sensing and control (ICNSC), Zhuhai, China, pp 1-5. https://doi.org/10.1109/ICNSC.2018.8361272 80. Macchi M, Roda I, Negri E et al (2018) Exploring the role of digital twin for asset lifecycle management. IFAC-PapersOnLine 51(11):790-795 81. He Y, Guo J, Zheng X (2018) From surveillance to digital twin:challenges and recent advances of signal processing for industrial internet of things. IEEE Signal Process Mag 35(5):120-129 82. Werner A, Zimmermann N, Lentes J (2019) Approach for a holistic predictive maintenance strategy by incorporating a digital twin. In:The 25th international conference on production research manufacturing innovation:cyber physical manufacturing, Chicago, Illinois, USA, pp 1743-1751. https://doi.org/10.1016/j.promfg.2020.01.265 83. Wagner C, Grothoff J, Epple U et al (2017) The role of the Industry 4.0 asset administration shell and the digital twin during the life cycle of a plant. In:The 22nd IEEE international conference on emerging technologies and factory automation (ETFA), Limassol, Cyprus, pp 1-8. https://doi.org/10.1109/ETFA.2017.8247583 84. Min Q, Lu Y, Liu Z et al (2019) Machine learning based digital twin framework for production optimization in petrochemical industry. Int J Inf Manage 49:502-519 85. Guo J, Zhao N, Sun L et al (2019) Modular based flexible digital twin for factory design. J Ambient Intell Humaniz Comput 10(3):1189-1200 86. Rosen R, Boschert S, Sohr A (2018) Next generation digital twin. ATP Mag 60(10):86-96 87. Urbina Coronado PD, Lynn R, Louhichi W et al (2018) Part data integration in the shop floor digital twin:mobile and cloud technologies to enable a manufacturing execution system. J Manuf Syst 48(C):25-33 88. Schleich B, Anwer N, Mathieu L et al (2017) Shaping the digital twin for design and production engineering. CIRP Ann 66:141-144 89. Bao J, Guo D, Li J et al (2019) The modelling and operations for the digital twin in the context of manufacturing. Enterp Inf Syst 13(4):534-556 90. Liu Z, Meyendorf N, Mrad N (2017) The role of data fusion in predictive maintenance using digital twin. AIP Conf Proc 1949(1):020023. https://doi.org/10.1063/1.5031520 91. Miller AMD, Alvarez R, Hartman N (2018) Towards an extended model-based definition for the digital twin. Computer-Aided Des Appl 15(6):880-891 92. Kazmi SMA (2019) Methodology for validating mechatronic digital twin. Dissertation, Tampere University, Tampere, Finland 93. Schroeder G, Steinmetz C, Pereira CE et al (2016) Visualising the digital twin using web services and augmented reality. In:IEEE the 14th international conference on industrial informatics (INDIN), University of Poitiers, Poitiers, France, pp 522-527. https://doi.org/10.1109/INDIN.2016.7819217 94. Wu P, Qi M, Gao L et al (2019) Research on the virtual reality synchronization of workshop digital twin. In:IEEE the 8th joint international information technology and artificial intelligence conference (ITAIC), Chongqing, China, pp 875-879. https://doi.org/10.1109/ITAIC.2019.8785552 95. Cai Y, Wang Y, Burnett M (2020) Using augmented reality to build digital twin for reconfigurable additive manufacturing system. J Manuf Syst 56:598-604 96. Zhu Z, Liu C, Xu X (2019) Visualisation of the digital twin data in manufacturing by using augmented reality. In:The 52nd CIRP conference on manufacturing systems (CMS), Ljubljana, Slovenia, pp 898-903. https://doi.org/10.1016/j.procir.2019.03.223 97. Williams R, Erkoyuncu JA, Masood T et al (2020) Augmented reality assisted calibration of digital twins of mobile robots. IFAC-Papers OnLine 53(3):203-208 98. Revetria R, Tonelli F, Damiani L et al (2019) A real-time mechanical structures monitoring system based on digital twin, IOT and augmented reality. In:2019 Spring simulation conference (SpringSim), University of Arizona, Tucson, Arizona, USA, pp 1-10. https://doi.org/10.23919/SpringSim.2019.8732917 99. Xie X, Lu Q, Rodenas-Herraiz D et al (2020) Visualised inspection system for monitoring environmental anomalies during daily operation and maintenance. Eng Constr Archit Manag 27(8):1835-1852 100. Sepasgozar SME (2020) Digital twin and web-based virtual gaming technologies for online education:a case of construction management and engineering. Appl Sci 10(13):4678. https://doi.org/10.3390/app10134678 101. Leskovsky R, Kucera E, Haffner O et al (2020) Proposal of digital twin platform based on 3D rendering and IIoT principles using virtual/augmented reality. In:2020 Cybernetics & informatics (K&I), Velké Karlovice, Czech Republic, pp 1-8. https://doi.org/10.1109/KI48306.2020.9039804 102. Han YS, Lee J, Lee J et al (2019) 3D CAD data extraction and conversion for application of augmented/virtual reality to the construction of ships and offshore structures. Int J Comput Integr Manuf 32(7):658-668 103. Rabah S, Assila A, Khouri E et al (2018) Towards improving the future of manufacturing through digital twin and augmented reality technologies. In:The 28th international conference on flexible automation and intelligent manufacturing (FAIM 2018), Columbus, Ohio, USA, pp 460-467. https://doi.org/10.1016/j.promfg.2018.10.070 104. Liu S, Lu S, Li J et al (2021) Machining process-oriented monitoring method based on digital twin via augmented reality. Int J Adv Manuf Technol 113(11/12):3491-3508 105. Müller F, Deuerlein C, Koch M (2021) Cyber-physical-system for representing a robot end effector. Procedia CIRP 100:307-312 106. Glaessgen EH, Stargel DS (2012) The digital twin paradigm for future NASA and U.S. air force vehicles. In:The 53rd AIAA/ASME/ASCE/AHS/ASC structures, structural dynamics and materials conference, Honolulu, Hawaii, USA. https://doi.org/10.2514/6.2012-1818 107. Frontoni E, Loncarski J, Pierdicca R et al (2018) Cyber physical systems for Industry 4.0:towards real time virtual reality in smart manufacturing. In:International conference augmented reality, virtual reality, and computer graphics, Otranto, Italy, pp 422-434. https://doi.org/10.1007/978-3-319-95282-6_31 108. Kaur MJ, Mishra VP, Maheshwari P (2020) The convergence of digital twin, IoT, and machine learning:transforming data into action. In:Farsi M, Daneshkhah A, Hosseinian-Far A et al (eds) Digital twin technologies and smart cities. Internet of things (technology, communications and computing), Springer, Cham. https://doi.org/10.1007/978-3-030-18732-3_1 109. OPC Foundation (2015) Unified architecture. OPC Foundation. https://opcfoundation.org/about/opc-technologies/opc-ua/. Accessed:03 April 2020 110. Goralski W (2017) The illustrated network:how TCP/IP works in a modern network, 2nd edn. Morgan Kaufmann, Burlington, Massachusetts, pp 3-46. https://doi.org/10.1016/B978-0-12-811027-0.00001-1 111. Guha Roy D, Mahato B, De D et al (2018) Application-aware end-to-end delay and message loss estimation in internet of things (IoT)-MQTT-SN protocols. Futur Gener Comput Syst 89:300-316 112. Park JH, Kim HS, Kim WT (2018) DM-MQTT:an efficient MQTT based on SDN multicast for massive IoT communications. Sensors 18(9):3071. https://doi.org/10.3390/s18093071 113. Mois G, Folea S, Sanislav T (2017) Analysis of three IoT-based wireless sensors for environmental monitoring. IEEE Trans Instrum Meas 66(8):2056-2064 114. Huang JM, Ong SK, Nee AYC (2017) Visualization and interaction of finite element analysis in augmented reality. Comput Aided Des 84:1-14 115. Bruno F, Caruso F, De Napoli L et al (2006) Visualization of industrial engineering data in augmented reality. J Vis 9(3):319-329 116. Salter JD, Campbell C, Journeay M et al (2009) The digital workshop:exploring the use of interactive and immersive visualisation tools in participatory planning. J Environ Manag 90(6):2090-2101 117. Fritz J, U-Thainual P, Ungi T et al (2012) Augmented reality visualization with use of image overlay technology for MR imaging-guided interventions:assessment of performance in cadaveric shoulder. Radiology 265(1):254-259 118. Azuma RT (1997) A survey of augmented reality. Presence Teleoperators Virtual Environ 6(4):355-385 119. Liu C, Huot S, Diehl J et al (2012) Evaluating the benefits of real-time feedback in mobile augmented reality with hand-held devices. In:Proceedings of the SIGCHI conference on human factors in computing systems (CHI'12), Austin, Texas, USA, pp 2973-2976. https://doi.org/10.1145/2207676.2208706 120. Samini A, Palmerius KL (2016) A study on improving close and distant device movement pose manipulation for hand-held augmented reality. In:Proceedings of the 22nd ACM conference on virtual reality software and technology (VRST'16), Munich, Germany, pp 121-128. https://doi.org/10.1145/2993369.2993380 121. Cruz-Neira C, Sandin DJ, DeFanti TA et al (1992) The CAVE:audio visual experience automatic virtual environment. Commun ACM 35(6):64-72 |
[1] | Bin He, Kai-Jian Bai. Digital twin-based sustainable intelligent manufacturing: a review[J]. Advances in Manufacturing, 2021, 9(1): 1-21. |
[2] | C. Y. Siew, S. K. Ong, A. Y. C. Nee. Improving maintenance effi ciency and safety through a human-centric approach[J]. Advances in Manufacturing, 2021, 9(1): 104-114. |
[3] | S. K. Ong, X. Wang, A. Y. C. Nee. 3D bare-hand interactions enabling ubiquitous interactions with smart objects[J]. Advances in Manufacturing, 2020, 8(2): 133-143. |
[4] | S. K. Ong, A. Y. C. Nee, A. W. W. Yew, N. K. Thanigaivel. AR-assisted robot welding programming[J]. Advances in Manufacturing, 2020, 8(1): 40-48. |
[5] | Harald Rødseth, Per Schjølberg, Andreas Marhaug. Deep digital maintenance[J]. Advances in Manufacturing, 2017, 5(4): 299-310. |
[6] | Yi Wang, Hai-Shu Ma, Jing-Hui Yang, Ke-Sheng Wang. Industry 4.0: a way from mass customization to mass personalization production[J]. Advances in Manufacturing, 2017, 5(4): 311-320. |
[7] | C. K. M. Lee, S. Z. Zhang, K. K. H. Ng. Development of an industrial Internet of things suite for smart factory towards re-industrialization[J]. Advances in Manufacturing, 2017, 5(4): 335-343. |
[8] | Jo Wessel Strandhagen, Erlend Alfnes, Jan Ola Strandhagen, Logan Reed Vallandingham. The fit of Industry 4.0 applications in manufacturing logistics: a multiple case study[J]. Advances in Manufacturing, 2017, 5(4): 344-358. |
[9] | Jan Ola Strandhagen, Logan Reed Vallandingham, Giuseppe Fragapane, Jo Wessel Strandhagen, Aili Biriita Hætta Stangeland, Nakul Sharma. Logistics 4.0 and emerging sustainable business models[J]. Advances in Manufacturing, 2017, 5(4): 359-369. |
[10] | Zhe Li, Yi Wang, Ke-Sheng Wang. Intelligent predictive maintenance for fault diagnosis and prognosis in machine centers: Industry 4.0 scenario[J]. Advances in Manufacturing, 2017, 5(4): 377-387. |
[11] | Wladimir Bodrow. Impact of Industry 4.0 in service oriented firm[J]. Advances in Manufacturing, 2017, 5(4): 394-400. |
[12] | D. Ni, A. W. W. Yew, S. K. Ong, A. Y. C. Nee. Haptic and visual augmented reality interface for programming welding robots[J]. Advances in Manufacturing, 2017, 5(3): 191-198. |
[13] | X. Wang, S. K. Ong, A. Y. C. Nee. A comprehensive survey of augmented reality assembly research[J]. Advances in Manufacturing, 2016, 4(1): 1-22. |
[14] | H. C. Fang, S. K. Ong, A. Y. C. Nee. Novel AR-based interface for human-robot interaction and visualization[J]. Advances in Manufacturing, 2014, 2(4): 275-288. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Tel: 86-21-66135510
Fax: 86-21-66132736
E-mail: aim@oa.shu.edu.cn