1. Peng A, Xiao X, Yue R (2014) Process parameter optimization for fused deposition modeling using response surface methodology combined with fuzzy inference system. Int J Adv Manuf Technol 73(1/4): 87–100 2. Thrimurthulu K, Pandey PM, Reddy NV (2004) Optimum part deposition orientation in fused deposition modeling. Int J Mach Tools Manuf 44(6): 585–594 3. Jin Y, He Y, Xue G et al (2015) A parallel-based path generation method for fused deposition modeling. Int J Adv Manuf Technol 77(5/8): 927–937 4. Ahn D, Kweon JH, Kwon S et al (2009) Representation of surface roughness in fused deposition modeling. J Mater Process Technol 209(15/16): 5593–5600 5. Chang DY, Huang BH (2011) Studies on profile error and extruding aperture for the RP parts using the fused deposition modeling process. Int J Adv Manuf Technol 53(9/12): 1027–1037 6. Nuchitprasitchai S, Roggemann M, Pearce J (2017) Three hundred and sixty degree real-time monitoring of 3-D printing using computer analysis of two camera views. J Manuf Mater Process 1(1): 2. https://doi.org/10.3390/jmmp1010002 7. Yang Z, Jin L, Yan Y et al (2018) Filament breakage monitoring in fused deposition modeling using acoustic emission technique. Sensors 18(3): 749. https://doi.org/10.3390/s18030749 8. Li F, Yu Z, Yang Z et al (2019) Real-time distortion monitoring during fused deposition modeling via acoustic emission. Struct Health Monit 19(2): 412–423 9. Chohan JS, Singh R (2017) Pre and post processing techniques to improve surface characteristics of FDM parts: a state of art review and future applications. Rapid Prototyp J 23(3): 495–513 10. Wolszczak P, Lygas K, Paszko M et al (2018) Heat distribution in material during fused deposition modelling. Rapid Prototyp J 24(3): 615–622 11. Kousiatza C, Karalekas D (2016) In-situ monitoring of strain and temperature distributions during fused deposition modeling process. Mater Des 97: 400–406 12. Ji LB, Zhou TR (2010) Finite element simulation of temperature field in fused deposition modeling. Adv Mater Res Trans Tech Publ 97: 2585–2588 13. Zhou X, Hsieh SJ (2017) Thermal analysis of fused deposition modeling process using infrared thermography imaging and finite element modeling. In Thermosense: Thermal Infrared Applications XXXIX, International Society for Optics and Photonics 10214: 1021409. https://doi.org/10.1117/12.2262796 14. Zhou Y, Nyberg T, Xiong G et al (2016) Temperature analysis in the fused deposition modeling process. In: 2016 3rd international conference on information science and control engineering (ICISCE), IEEE, pp 678–682 15. Zhou X, Hsieh SJ, Sun Y (2017) Experimental and numerical investigation of the thermal behaviour of polylactic acid during the fused deposition process. Virtual Phys Prototyp 12(3): 221–233 16. Roy M, Yavari R, Zhou C et al (2019) Prediction and experimental validation of part thermal history in the fused filament fabrication additive manufacturing process. J Manuf Sci Eng 141(12): 121001. https://doi.org/10.1115/1.4045056 17. Mohamed OA, Masood SH, Bhowmik JL (2015) Optimization of fused deposition modeling process parameters: a review of current research and future prospects. Adv Manuf 3(1): 42–53 18. Sahu RK, Mahapatra S, Sood AK (2013) A study on dimensional accuracy of fused deposition modeling (FDM) processed parts using fuzzy logic. J Manuf Sci Prod 13(3): 183–197 19. Kumar GP, Regalla SP (2012) Optimization of support material and build time in fused deposition modeling (FDM). Appl Mech Mater Trans Tech Publ 110: 2245–2251 20. Sood AK, Ohdar RK, Mahapatra SS (2010) Parametric appraisal of mechanical property of fused deposition modelling processed parts. Mater Des 31(1): 287–295 21. Percoco G, Lavecchia F, Galantucci LM (2012) Compressive properties of FDM rapid prototypes treated with a low cost chemical finishing. Res J Appl Sci Eng Technol 4(19): 3838–3842 22. Rayegani F, Onwubolu GC (2014) Fused deposition modelling (FDM) process parameter prediction and optimization using group method for data handling (GMDH) and differential evolution (DE). Int J Adv Manuf Technol 73(1/4): 509–519 23. Masood SH, Mau K, Song W (2010) Tensile properties of processed FDM polycarbonate material. Mater Sci Forum Trans Tech Publ 654: 2556–2559 24. Arivazhagan A, Masood S, Sbarski I (2011) Dynamic mechanical analysis of FDM rapid prototyping processed polycarbonate material. In: Proceedings of the 69th annual technical conference of the society of plastics engineers, pp 950–955 25. Arivazhagan A, Masood S (2012) Dynamic mechanical properties of ABS material processed by fused deposition modelling. Int J Eng Res Appl 2(3): 2009–2014 26. Widodo A, Kim EY, Son JD et al (2009) Fault diagnosis of low speed bearing based on relevance vector machine and support vector machine. Expert Syst Appl 36(3): 7252–7261 27. Jegadeeshwaran R, Sugumaran V (2015) Fault diagnosis of automobile hydraulic brake system using statistical features and support vector machines. Mech Syst Signal Process 52: 436–446 28. Senanayaka JSL, Kandukuri ST, Van Khang H et al (2017) Early detection and classification of bearing faults using support vector machine algorithm. In: 2017 IEEE workshop on electrical machines design, control and diagnosis (WEMDCD), IEEE, pp 250–255 29. Vapnik V (1999) The nature of statistical learning theory. Springer science & business media, New York 30. Wang TM, Jin H, Xi JT (2006) The adhesive mechanism and thermal analysis of fibers in the FDM process. J Shanghai Jiaotong Univ 40(7): 1230–1233 31. Cover T, Hart P (1967) Nearest neighbor pattern classification. IEEE Trans Inf Theory 13(1): 21–27 |