1. Guo J, Wang XY, Zhao Y et al (2021) Recent progress on fabrication technologies and machining performance of textured cutting tools. J Mech Eng 57(13):172-200 2. Guo J, Zhang JG, Pan YA et al (2020) A critical review on the chemical wear and wear suppression of diamond tools in diamond cutting of ferrous metals. Int J Extrem Manuf 2(1):5-27 3. Zhang JG, Li QS, Zhang H et al (2017) Fast generation of micro structured surface by applying PCD tools in micro turning. Int J Adv Manuf Technol 90(1/4):1165-1176 4. Li GX, Rahim MZ, Ding SL et al (2016) Performance and wear analysis of polycrystalline diamond (PCD) tools manufactured with different methods in turning titanium alloy Ti-6Al-4V. Int J Adv Manuf Technol 85(1/4):825-841 5. Lindvall D, Lenrick F, Persson F et al (2020) Performance and wear mechanisms of PCD and pcBN cutting tools during machining titanium alloy Ti6Al4V. Wear 454/455:203329. https://doi.org/10.1016/j.wear.2020.203329 6. Li GX, Rahim MZ, Pan WC et al (2020) The manufacturing and the application of polycrystalline diamond tools-a comprehensive review. J Manuf Process 56:400-416 7. Teti R, Jemielniak K, O'Donnell G et al (2010) Advanced monitoring of machining operations. CIRP Ann Manuf Technol 9(1):717-739 8. Hawryluk M, Ziemba J, Dworzak L (2017) Development of a method for tool wear analysis using 3D scanning. Metrol Meas Syst 24(4):739-757 9. Asai S, Taguchi Y, Horio K et al (1990) Measuring the very small cutting-edge radius for a diamond tool using a new kind of SEM having two detectors. CIRP Ann Manuf Technol 39(1):85-88 10. Angseryd J, Coronel E, Elfwing M et al (2009) The microstructure of the affected zone of a worn PCBN cutting tool characterised with SEM and TEM. Wear 267(5):1031-1040 11. Shi M, Lane B, Mooney CB et al (2010) Diamond tool wear measurement by electron-beam-induced deposition. Precis Eng 34(4):718-721 12. Tosello G, Hansen HN, Marinello F et al (2010) Replication and dimensional quality control of industrial nanoscale surface using calibrated AFM measurement and SEM image processing. CIRP Ann Manuf Technol 59:563-568 13. Ikai A, Afrin R, Saito M et al (2018) Atomic force microscope as a nano- and micrometer scale biological manipulator:a short review. Semin Cell Dev Biol 73:132-144 14. Mazzeo AD, Stein AJ, Trumper DL et al (2009) Atomic force microscope for accurate dimensional metrology. Precis Eng 33(2):135-149 15. Cai YD, Chen YL, Xu ML et al (2018) An ultra-precision tool nanoindentation instrument for replication of single point diamond tool cutting edges. Meas Sci Technol 29(5):054004. https://doi.org/10.1088/1361-6501/aaa913 16. Li XP, Rahman M, Liu K et al (2003) Nano-precision measurement of diamond tool edge radius for wafer fabrication. J Mater Process Technol 140:358-362 17. Chen YL, Cai YD, Shimizu Y et al (2016) On-machine measurement of microtool wear and cutting edge chipping by using a diamond edge artifact. Precis Eng 43:462-467 18. Bagga PJ, Makhesana MA, Patel K et al (2021) Tool wear monitoring in turning using image processing techniques. Mater Today 44(1):771-775. https://doi.org/10.1016/j.matpr.2020.10.680 19. Jurkovic J, Korosec M, Kopac J (2004) New approach in tool wear measuring technique using CCD vision system. Int J Mach Tools Manuf 45(9):1023-1030 20. Mohammed WM, Ng E, Elbestawi MA (2012) Modeling the effect of compacted graphite iron microstructure on cutting forces and tool wear. CIRP Ann Manuf Technol 5(2):87-101 21. Azmi AI (2015) Monitoring of tool wear using measured machining forces and neuro-fuzzy modelling approaches during machining of GFRP composites. Adv Eng Softw 82:53-64 22. Hernandez YS, Vilches FJT, Gamboa CB et al (2019) Online tool wear monitoring by the analysis of cutting forces in transient state for dry machining of Ti6Al4V alloy. Metals 9(9):1014. https://doi.org/10.3390/met9091014 23. Yamaguchi T, Higuchi M, Shimada S et al (2009) Tool life monitoring during the diamond turning of electroless Ni-P. Precis Eng 31(3):196-201 24. Rao DK, Srinivas K (2017) An analysis of feature identification for tool wear monitoring by using acoustic emission. J New Mat Electr Sys 34(3/4):117-135 25. Song KY, Wang M, Liu LM et al (2020) Intelligent recognition of milling cutter wear state with cutting parameter independence based on deep learning of spindle current clutter signal. Int J Adv Manuf Technol 109(3/4):929-942 26. Akbari A, Danesh M, Khalili K (2017) A method based on spindle motor current harmonic distortion measurements for tool wear monitoring. J Braz Soc Mech Sci 39(12):5049-5055 27. Fang JW, Zhang C, Zhou LS (2010) Study of indirect measurement of tool wear in milling. Mach Build Autom 40(3):56-58 28. Sun YH, Zhang C, Guo S et al (2011) Software development and data processing of tool wear based on mapping measurement for ball-end cutter. Mach Des Manuf 2011(11):150-152 29. Bagga PJ, Makhesana MA, Patel KM (2021) A novel approach of combined edge detection and segmentation for tool wear measurement in machining. Prod Eng Res Devel 15:519-533 30. Chen YL, Cai YD, Xu M et al (2017) An edge reversal method for precision measurement of cutting edge radius of single point diamond tools. Precis Eng 50:380-387 31. Evans CJ, Hocken RJ, Estler WT (1996) Self-calibration:reversal, redundancy, error separation and 'absolute testing'. CIRP Ann Manuf Technol 45(2):617-634 32. Zhang K, Cai YD, Shimizu Y et al (2020) High-precision cutting edge radius measurement of single point diamond tools using an atomic force microscope and a reverse cutting edge artifact. Appl Sci 14(10):4799. https://doi.org/10.3390/app10144799 33. Elias JV, Venkatesh NP, Lawrence K et al (2021) Tool texturing for micro-turning applications-an approach using mechanical micro indentation. Mater Manuf Proc 36(1):84-93 34. Johnson KL (1982) One hundred years of hertz contact. Proc Inst Mech Eng 196(1):363-378 |