1. Mallock A (1881) The action of cutting tools. Proc R Soc Lond 33:127-139 2. Merchant ME (1945) Mechanics of the metal cutting process. I. Orthogonal cutting and a type 2 chip. J Appl Phys 16:267-275 3. Merchant ME (1945) Mechanics of the metal cutting process. II. Plasticity conditions in orthogonal cutting. J Appl Phys 16:318-324 4. Jackson MJ, Ahmed W, Whitt M et al (2015) Chapter 10-commercialization of nanotechnologies:technology transfer from university research laboratories. Emerg Nanotechnol Manuf 4:270-278 5. Fang FZ, Xu FF (2018) Recent advances in micro/nano-cutting:effect of tool edge and material properties. Nanomanuf Metrol 1:4-31 6. Arrazola PJ, Özel T, Umbrello D et al (2013) Recent advances in modelling of metal machining processes. CIRP Ann Manuf Technol 62:695-718 7. Lai M, Zhang XD, Fang FZ (2012) Study on critical rake angle in nanometric cutting. Appl Phys A 108:809-818 8. Shimada S, Ikawa N, Tanaka H et al (1993) Feasibility study on ultimate accuracy in microcutting using molecular dynamics simulation. CIRP Ann Manuf Technol 42:91-94 9. Shimada S, Ikawa N, Tanaka H et al (1994) Structure of micromachined surface simulated by molecular dynamics analysis. CIRP Ann Manuf Technol 43:51-54 10. Komanduri R, Chandrasekaran N, Raff LM (1999) Orientation effects in nanometric cutting of single crystal materials:an MD simulation approach. Ann CIRP 48:67-72 11. Komanduri R, Chandrasekaran N, Raff LM (2000) MD simulation of nanometric cutting of single crystal aluminum-effect of crystal orientation and direction of cutting. Wear 242(1/2):60-88 12. Komanduri R (2001) Molecular dynamics simulation of the nanometric cutting of silicon. Philos Mag B. https://doi.org/10.1080/13642810110069260 13. Fang FZ, Venkatesh VC (1998) Diamond cutting of silicon with nanometric finish. CIRP Ann Manuf Technol 47:45-49 14. Fang FZ, Wu H, Liu YC (2005) Modelling and experimental investigation on nanometric cutting of monocrystalline silicon. Int J Mach Tool Manuf 45:1681-1686 15. Chen J, Wang Q, Liang Y et al (2012) Nano-cutting molecular dynamics simulation of a copper single crystal. Procedia Eng 29:3478-3482 16. Chen J, Liang Y, Chen M et al (2009) A study of the subsurface damaged layers in nanoscratching. Int J Abrasive Technol 2:368-381 17. Liang YC, Chen JX, Chen MJ et al (2008) Integrated MD simulation of scratching and shearing of 3D nanostructure. Comput Mater Sci 43:1130-1140 18. Wang Q, Bai Q, Chen J et al (2015) Subsurface defects structural evolution in nano-cutting of single crystal copper. Appl Surf Sci 344:38-46 19. Wang Q, Bai Q, Chen J et al (2015) Influence of cutting parameters on the depth of subsurface deformed layer in nano-cutting process of single crystal copper. Nanoscale Res Lett 10:396. https://doi.org/10.1186/s11671-015-1082-1 20. Xu FF, Fang FF, Zhu YQ et al (2017) Study on crystallographic orientation effect on surface generation of aluminum in nanocutting. Nanoscale Res Lett 12:289. https://doi.org/10.1186/s11671-017-1990-3 21. Fan P, Ding F, Luo X et al (2020) A simulated investigation of ductile response of GaAs in single-point diamond turning and experimental validation. Nanomanuf Metrol 3:239-250 22. Xie WK, Fang FZ (2019) Cutting-based single atomic layer removal mechanism of monocrystalline copper:atomic sizing effect. Nanomanuf Metrol 2:241-252 23. Kim YJ, Qaiser N, Han SM (2016) Time-dependent deformation of Sn micropillars. Mater Des 102:168-173 24. Bernard S, Maillet JB (2002) First-principles calculation of the melting curve and Hugoniot of tin. Phys Rev B 66(1):012103. https://doi.org/10.1103/PhysRevB.66.012103 25. Kinoshita Y, Matsushima H, Ohno N (2012) Predicting active slip systems in β-Sn from ideal shear resistance. Model Simul Mater Sci Eng 20:35003-35011 26. Kaira CS, Singh SS, Kirubanandham A et al (2016) Microscale deformation behavior of bicrystal boundaries in pure tin (Sn) using micropillar compression. Acta Mater 120:56-67 27. Philippi B, Kirchlechner C, Micha JS et al (2016) Size and orientation dependent mechanical behavior of body-centered tetragonal Sn at 0.6 of the melting temperature. Acta Mater 115:76-82 28. Vallabhaneni R, Izadi E, Mayer CR et al (2017) In situ tensile testing of tin (Sn) whiskers in a focused ion beam (FIB)/scanning electron microscope (SEM). Microelectron Reliab 79:314-320 29. Tian L, Li J, Sun J et al (2013) Visualizing size-dependent deformation mechanism transition in Sn. Sci Rep 3:2113. https://doi.org/10.1038/srep02113 30. Thompson AP, Aktulga HM, Berger R et al (2022) LAMMPS-a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales. Comput Phys Commun 271:108171. https://doi.org/10.1016/j.cpc.2021.108171 31. Stukowski A (2010) Visualization and analysis of atomistic simulation data with OVITO-the open visualization tool. Model Simul Mater Sci 18(1):015012. https://doi.org/10.1088/0965-0393/18/1/015012 32. Goel S, Luo X, Reuben RL (2013) Wear mechanism of diamond tools against single crystal silicon in single point diamond turning process. Tribol Int 57:272-281 33. Xu FF, Fang FZ, Zhang XD (2017) Hard particle effect on surface generation in nano-cutting. Appl Surf Sci 425:1020-1027 34. Baskes MI (1992) Modified embedded-atom potentials for cubic materials and impurities. Phys Rev B 46:2727-2742 35. Ravelo R, Baskes M (1997) Equilibrium and thermodynamic properties of grey, white, and liquid tin. Phys Rev Lett 79:2482-2485 36. Vella JR, Chen M, Stillinger FH et al (2017) Structural and dynamic properties of liquid tin from a new modified embeddedatom method force field. Phys Rev B 95(6):064202. https://doi.org/10.1103/PhysRevB.95.064202 37. Ko WS, Kim DH, Kwon YJ et al (2018) Atomistic simulations of pure tin based on a new modified embedded-atom method interatomic potential. Metals 8(11):900. https://doi.org/10.3390/met8110900 38. Yi L, Xiang M, Zeng X et al (2014) Molecular dynamics study of the micro-spallation of single crystal tin. Comput Mater Sci 95:89-98 39. Hai D, Fan L, Moon KS et al (2005) MEAM molecular dynamics study of lead free solder for electronic packaging applications. Model Simul Mater Sci Eng 13:1279. https://doi.org/10.1088/0965-0393/13/8/006 40. Kuo CL, Clancy P (2004) MEAM molecular dynamics study of a gold thin film on a silicon substrate. Surf Sci 551:39-58 41. Sellers MS, Schultz AJ, Basaran C et al (2010) Atomistic modeling of β-Sn surface energies and adatom diffusivity. Appl Surf Sci 256:4402-4407 42. Sellers MS, Schultz AJ, Basaran C et al (2011) β-Sn grain-boundary structure and self-diffusivity via molecular dynamics simulations. Phys Rev B 81:134111. https://doi.org/10.1103/PhysRevB.81.134111 43. Xu FF, Fang FZ, Zhang XD (2017) Side flow effect on surface generation in nanocutting. Nanoscale Res Lett 12:359. https://doi. org/10.1186/s11671-017-2136-3 44. Bernard S (2002) First-principles calculation of the melting curve and Hugoniot of tin. Phys Rev B 66:e15576. https://doi.org/10. 1103/PhysRevB.66.012103 45. Harbin, (2013) Analytical bond-order potential for Sn. Acta Phys Sin 62:526-532 46. Wang JS, Zhang XD, Fang FZ et al (2018) A numerical study on the material removal and phase transformation in the nanometric cutting of silicon. Appl Surf Sci 455:608-615 47. Chavoshi SZ, Xu S, Luo X (2016) Dislocation-mediated plasticity in silicon during nanometric cutting:a molecular dynamics simulation study. Mater Sci Semicon Proc 51:60-70 48. Fang FZ, Xu FF, Lai M (2015) Size effect in material removal by cutting at nano scale. Int J Adv Manuf Technol 80:591-598 49. Lai M, Zhang XD, Fang FZ et al (2013) Study on nanometric cutting of germanium by molecular dynamics simulation. Nanoscale Res Lett 8:1-10 50. He Y, Lai M, Fang FZ (2019) A numerical study on nanometric cutting mechanism of lutetium oxide single crystal. Appl Surf Sci 496:143715. https://doi.org/10.1016/j.apsusc.2019. 143715 |