1. He QP, Wang J (2018) Statistical process monitoring as a big data analytics tool for smart manufacturing. J Process Contr 67:35–43 2. Leali F, Vergnano A, Pini F et al (2016) A workcell calibration method for enhancing accuracy in robot machining of aerospace parts. Int J Adv Manuf Tech 85:47–55 3. Lee WJ, Mendis GP, Triebe MJ et al (2019) Monitoring of a machining process using kernel principal component analysis and kernel density estimation. J Intell Manuf 31:1175–1189 4. Gonzalez-val C, Pallas A, Panadeiro V et al (2019) A convolutional approach to quality monitoring for laser manufacturing. J Intell Manuf 31:789–795 5. Hassan M, Sadek A, Damir A et al (2018) A novel approach for real-time prediction and prevention of tool chipping in intermittent turning machining. CIRP Ann Manuf Techn 67(1):41–44 6. Zhao LP, Li BH, Chen HR et al (2018) An assembly sequence optimization oriented small world networks genetic algorithm and case investigate. Assem Autom 38(4):387–397 7. Du C, Ho CL, Kaminski J (2021) Prediction of product roughness, profile, and roundness using machine learning techniques for a hard turning process. Adv Manuf 9:206–215 8. Benkedjouh T, Medjaher K, Zerhouni N et al (2015) Health assessment and life prediction of cutting tools based on support vector regression. J Intell Manuf 26:213–223 9. Wang Y, Perry M, Whitlock D et al (2020) Detecting anomalies in time series data from a manufacturing system using recurrent neural networks. J Manuf Syst 62:823–834 10. Hu S, Zhang M, Cui Y et al (2017) Accuracy enhancement with processing error prediction and compensation of a CNC flame cutting machine used in spatial surface operating conditions. J Eng Technol Sci 49:75–94 11. Zhao Z, Wang S, Wang Z et al (2020) Surface roughness stabilization method based on digital twin-driven machining parameters self-adaption adjustment: a case investigate in five-axis machining. J Intell Manuf 33:943–952 12. Yin X, Niu Z, He Z et al (2020) An integrated computational intelligence technique based operating parameters optimization scheme for quality improvement oriented process-manufacturing system. Comput Ind Eng 140:106287. https://doi.org/10.1016/j.cie.2020.106284 13. Luo W, Hu T, Ye Y et al (2020) A hybrid predictive maintenance approach for CNC machine tool driven by digital twin. Robot Cim-Int Manuf 65:101974. https://doi.org/10.1016/j.rcim.2020.101974 14. Jovic S, Anicic O, Jovanovic M (2017) Adaptive neuro-fuzzy fusion of multi-sensor data for monitoring of CNC machining. Sens Rev 37(1):78–81 15. Bai Y, Sun ZZ, Zeng B et al (2019) A comparison of dimension reduction techniques for support vector machine modeling of multi-parameter manufacturing quality prediction. J Intell Manuf 30:2245–2256 16. Li BH, Zhao LP, Yao YY (2021) Failure time prognosis in manufacturing process using multi-dislocated time series convolutional neural network. P I Mech Eng E-J Pro 235(4):832–840 17. Aivaliotis P, Georgoulias K, Chryssolouris G (2019) The use of digital twin for predictive maintenance in manufacturing. Int J Comput Integ M 32(11):1067–1080 18. Liu C, Li Y, Zhou G et al (2016) A sensor fusion and support vector machine based approach for recognition of complex machining conditions. J Intell Manuf 29:1739–1752 19. Jiang P, Jia F, Wang Y et al (2012) Real-time quality monitoring and predicting model based on error propagation networks for multistage machining processes. J Intell Manuf 25:521–538 20. Diez-Olivan A, Pagan JA, Khoa NLD et al (2017) Kernel-based support vector machines for automated health status assessment in monitoring sensor data. Int J Adv Manuf Technol 95:327–340 21. Ren L, Meng Z, Wang X et al (2020) A data-driven approach of product quality prediction for complex production systems. IEEE T Ind Inform 17(9):6457–6465 22. Zhou X, Jiang P (2014) Variation source identification for deep hole boring process of cutting-hard workpiece based on multi-source information fusion using evidence theory. J Intell Manuf 28:255–270 23. Wuest T, Irgens C, Thoben KD (2013) An approach to monitoring quality in manufacturing using supervised machine learning on product state data. J Intell Manuf 25:1167–1180 24. Zhao L, He W, Li B et al (2019) Multi-gradient decoupling control of quality fluctuation in manufacturing process. In: IEEE/ASME international conference on advanced intelligent mechatronics (AIM), Hong Kong, China, pp 1539–1543 25. Liu Y, Yang C, Zhang M et al (2020) Development of adversarial transfer learning soft sensor for multigrade processes. Ind Eng Chem Res 59(37):16330–16345 26. Liu Y, Yang C, Liu K et al (2019) Domain adaptation transfer learning soft sensor for product quality prediction. Chemom Intell Lab Syst 192:103813 27. Sun C, Ma M, Zhao ZB et al (2019) Deep transfer learning based on sparse autoencoder for remaining useful life prediction of tool in manufacturing. IEEE T Ind Inform 15(4):2416–2425 28. Cao P, Zhang SL, Tang J (2018) Preprocessing-free gear fault diagnosis using small datasets with deep convolutional neural network-based transfer learning. IEEE Access 6:26241–26253 |