1. Wang F, Men X, Liu Y et al (2020) Experiment and simulation study on influence of ultrasonic rolling parameters on residual stress of Ti-6Al-4V alloy. Simul Model Pract Theory 104:102121. https://doi.org/10.1016/j.simpat.2020.102121 2. Wang N, Zhu J, Liu B et al (2021) Influence of ultrasonic surface rolling process and shot peening on fretting fatigue performance of Ti-6Al-4V. Chin J Mech Eng Engl Ed 34:1-13 3. Panin A, Kazachenok M, Perevalova O (2020) Surface modification of EBF3-Fabricated Ti-6Al-4V parts by ultrasonic impact treatment. In: AIP Conference Proceedings, Tomsk, 2020 4. Zhang Q, Li M, Han B et al (2021) Investigation on microstructures and properties of Al1.5CoCrFeMnNi high entropy alloy coating before and after ultrasonic impact treatment. J Alloys Compd 884:160989. https://doi.org/10.1016/j.jallcom.2021.160989 5. Meng D, Zhao X, Zhao S et al (2019) Effects of vibration direction on the mechanical behavior and microstructure of a metal sheet undergoing vibration-assisted uniaxial tension. Mater Sci Eng A 743:472-481 6. Chen Z, Liu C, Rani E et al (2021) Ultrasonic vibration-induced severe plastic deformation of Cu foils: effects of elastic-plastic stress wave bounce, acoustic softening, and size effect. Int J Adv Manuf Technol 115:3617-3629 7. Zohrevand M, Aghaie-Khafri M, Forouzan F et al (2021) Microstructural evolutions under ultrasonic treatment in 304 and 316 austenitic stainless steels: impact of stacking fault energy. Steel Res Int 92:1-12 8. Wang C, Hu X, Cheng Y et al (2021) Experimental investigation and numerical study on ultrasonic impact treatment of pure copper. Surf Coat Technol 428:127889. https://doi.org/10.1016/j.surfcoat.2021.127889 9. Geng J, Yan Z, Zhang H et al (2021) Microstructure and mechanical properties of AZ31B magnesium alloy via ultrasonic surface rolling process. Adv Eng Mater 23:1-7 10. Ao N, Liu D, Zhang X et al (2019) Surface nanocrystallization of body-centered cubic beta phase in Ti-6Al-4V alloy subjected to ultrasonic surface rolling process. Surf Coat Technol 361:35-41 11. Zhou M, Xu Y, Liu Y et al (2021) Microstructures and mechanical properties of Mg-15Gd-1Zn-0.4Zr alloys treated by ultrasonic surface rolling process. Mater Sci Eng A 828:141881. https://doi.org/10.1016/j.msea.2021.141881 12. Zhao W, Liu D, Zhang X et al (2019) Improving the fretting and corrosion fatigue performance of 300M ultra-high strength steel using the ultrasonic surface rolling process. Int J Fatigue 121:30-38 13. Wang P, Wang F, Pan Y et al (2020) Research on residual stress simulation on high performance aluminum alloy manufacturing. IOP Conf Ser Earth Environ Sci. https://doi.org/10.1088/1755-1315/440/2/022068 14. Dang J, An Q, Lian G et al (2021) Surface modification and its effect on the tensile and fatigue properties of 300M steel subjected to ultrasonic surface rolling process. Surf Coatings Technol 422:127566. https://doi.org/10.1016/j.surfcoat.2021.127566 15. Panin A, Dmitriev A, Nikonov A et al (2021) Transformations of the microstructure and phase compositions of titanium alloys during ultrasonic impact treatment. Part I. commercially pure titanium. Metals 11(4):562-574 16. Zheng GY, Luo X, Huang B et al (2021) Distributions of grains and precipitates in gradient lamellae Al-Zn-Mg-Cu alloy by ultrasonic surface rolling processing. Mater Sci Eng A. https://doi.org/10.1016/j.msea.2021.141911 17. Luo X, Ren X, Jin Q et al (2021) Microstructural evolution and surface integrity of ultrasonic surface rolling in Ti6Al4V alloy. J Mater Res Technol 13:1586-1598 18. Shen X, Gong X, Zhang J et al (2019) An investigation of stress condition in vibration-assisted burnishing. Int J Adv Manuf Technol 105:1189-1207 19. Meng Z, Yuanxi Z, Yang Z (2019) Theoretical and experimental analysis of compressive residual stress field on 6061 aluminum alloy after ultrasonic surface rolling process. Proc Inst Mech Eng Part C J Mech Eng Sci 233:5363-5376 20. Zhang M, Liu Z, Deng J et al (2019) Optimum design of compressive residual stress field caused by ultrasonic surface rolling with a mathematical model. Appl Math Model 76:800-831 21. Jiao F, Lan SL, Zhao B et al (2020) Theoretical calculation and experiment of the surface residual stress in the plane ultrasonic rolling. J Manuf Process 50:573-580 22. Li F, Zhao B, Lan S et al (2020) Experiment and simulation of the effect of ultrasonic rolling on the surface properties of Ti-6Al-4V. Int J Adv Manuf Technol 106:1893-1900 23. Liu Y, Wang F, Li H et al (2020) Study on ultrasonic rolling parameters to grain size of aluminum alloy 7075 surface. IEEE Int Conf Real-Time Comput Robot RCAR 2020:291-296. https://doi.org/10.1109/RCAR49640.2020.9303273 24. Duan Y, Qu S, Jia S et al (2021) Effects of ultrasonic surface rolling processing on microstructure and wear properties of high-carbon high-chromium steel. Surf Coat Technol 422:127531. https://doi.org/10.1016/j.surfcoat.2021.127531 25. Liu P, Wang R, Liu X et al (2021) Effect of surface ultrasonic rolling on evolution of surface microstructure of EA4T axle steel. J Mater Eng Perform 30:1270-1279 26. Arola D (2009) Surface texture and the stress concentration factor for FRP components with holes. J Compos Mater 37:1439-1460 27. Cheng Z, Liao R, Lu W (2017) Surface stress concentration factor via Fourier representation and its application for machined surfaces. Int J Solids Struct 113/114:108-117 28. Murakami Y (2019) Metal fatigue: effects of small defects and nonmetallic inclusions, Academic Press, London 29. Johnson KL (1987) Contact mechanics, Cambridge University Press, Cambridge 30. Bai Y, Yang M (2016) The influence of superimposed ultrasonic vibration on surface asperities deformation. J Mater Process Technol 229:367-374 31. Li G, Qu S, Xie M et al (2017) Effect of multi-pass ultrasonic surface rolling on the mechanical and fatigue properties of HIP Ti-6Al-4V alloy. Materials (Basel). https://doi.org/10.3390/ma10020133 |