1. Campbell JH, Hawley-Fedder RA, Stolz CJ et al (2004) NIF optical materials and fabrication technologies: an overview. Proc Soc Photo-Opt Instrum 5341:84-101 2. Shao JD, Dai YP, Xu Q (2012) Progress on the optical materials and components for the high power laser system in China. Proc SPIE. https://doi.org/10.1117/12.911108 3. Criddle J, Nürnberg F, Sawyer R et al (2016) Fused silica challenges in sensitive space applications. SPIE Astron Telesc Instrum 9912:99120K. https://doi.org/10.1117/12.2231661 4. Andrew N, Aleksandr E (2014) Overview of the optic component manufacturing and measurements for the advanced virgo optics. In: Processing of SPIE optical engineering applications, 17-21 August, San Diego, California. https://doi.org/10.1117/12.2062229 5. Camp J, Billingsley G, Kells W et al (2001) LIGO optics: initial and advanced. SPIE Boulder Damage, 1-3 October 2001, Boulder. https://doi.org/10.1117/12.461689 6. Suratwala T, Steele R, Feit MD et al (2008) Effect of rogue particles on the sub-surface damage of fused silica during grinding/polishing. J Non-Cryst Solids 354(18):2023-2037 7. Li L, Ge P (2022) Analytical modeling of the stress field in scratching anisotropic single-crystal silicon. Mater Sci Semicond Process 152:107099. https://doi.org/10.1016/j.mssp.2022.107099 8. Rouxel T (2015) Driving force for indentation cracking in glass: composition, pressure and temperature dependence. Philos Trans R Soc A 373:20140140. https://doi.org/10.1098/Rsta.2014.0140 9. Rouxel T, Ji H, Guin JP et al (2010) Indentation deformation mechanism in glass: densification versus shear flow. J Appl Phys 107:094903. https://doi.org/10.1063/1.3407559 10. Sonneville C, Mermet A, Champagnon B et al (2012) Progressive transformations of silica glass upon densification. J Chem Phys 137:124505. https://doi.org/10.1063/1.4754601 11. Möncke D, Lind F, Topper B et al (2021) Anomalous deformation behavior in ULE glass upon microindentation: a vibrational spectroscopic investigation in the induced structural changes of a Ti-silicate glass. J Phys Chem C 125(7):4183-4195 12. Rouxel T, Ji H, Hammouda T et al (2008) Poisson’s ratio and the densification of glass under high pressure. Phys Rev Lett 100:225501. https://doi.org/10.1103/Physrevlett.100.225501 13. Johnson KL (1987) Contact mechanics. Cambridge University Press, Cambridge, UK 14. Yoffe EH (1982) Elastic stress-fields caused by indenting brittle materials. Philos Mag A 46(4):617-628 15. Wang W, Li Z, Yao P et al (2020) Sink-in/pile-up formation and crack nucleation mechanisms of high purity fused silica and sodalime silica glass during nanoindentation experiments. Ceram Int 46(15):24698-24709 16. Ahn Y, Farris TN, Chandrasekar S (1998) Sliding microindentation fracture of brittle materials: role of elastic stress fields. Mech Mater 29(3/4):143-152 17. Jing X, Maiti S, Subhash G (2007) A new analytical model for estimation of scratch-induced damage in brittle solids. J Am Ceram Soc 90(3):885-892 18. Hu W, Teng Q, Hong T et al (2022) Stress field modeling of singleabrasive scratching of BK7 glass for surface integrity evaluation. Ceram Int 48(9):12819-12828 19. Wang W, Yao P, Wang J et al (2017) Elastic stress field model and micro-crack evolution for isotropic brittle materials during single grit scratching. Ceram Int 43(14):10726-10736 20. Jiang Q, Zhang L, Yang C (2022) Analysis of crack initiation load and stress field in double scratching of single crystal gallium nitride. Eng Fract Mech 274:108732. https://doi.org/10.1016/j.engfracmech.2022.108732 21. Gao S, Li H, Kang R et al (2021) Effect of strain rate on the deformation characteristic of AlN ceramics under scratching. Micromachines 12(1):77. https://doi.org/10.3390/mi12010077 22. Feng J, Huang X, Yang S et al (2021) Speed effect on the material behavior in high-speed scratching of BK7 glass. Ceram Int 47(14):19978-19988 23. Zhao F, Lin B, He Y et al (2022) Curvature effect induced cutting stress field offset and its influence on the damage of hard and brittle materials. J Mater Process Technol 303:117526. https://doi.org/10.1016/j.jmatprotec.2022.117526 24. Feng J, Wan Z, Wang W et al (2020) Unique crack behaviors of glass BK7 occurred in successive double scratch under critical load of median crack initiation. J Eur Ceram Soc 40(8):3279-3290 25. Li C, Zhang L, Sun L et al (2020) A finite element study on the effects of densification on fused silica under indentation. Ceram Int 46(17):26861-26870 26. Li C, Zhang L, Sun L et al (2019) A quantitative analysis of the indentation fracture of fused silica. J Am Ceram Soc 102(12):7264-7277 27. Feng G, Qu S, Huang Y et al (2007) An analytical expression for the stress field around an elastoplastic indentation/contact. Acta Mater 55(9):2929-2938 28. Fang X, Li C, Sun L et al (2020) Hardness and friction coefficient of fused silica under scratching considering elastic recovery. Ceram Int 46(6):8200-8208 29. Hamilton GM (1983) Explicit equations for the stresses beneath a sliding spherical contact. Proc Inst Mech Eng C J Mech Eng Sci 197(1):53-59 30. Huang H, Lawn BR, Cook RF et al (2020) Critique of materialsbased models of ductile machining in brittle solids. J Am Ceram Soc 103(11):6096-6100 31. Bifano TG, Dow TA, Scattergood RO (1991) Ductile-regime grinding: a new technology for machining brittle materials. J Eng Ind 113(2):184-189 32. Oliver WC, Pharr GM (1992) An improved technique for determining hardness and elastic-modulus using load and displacement sensing indentation experiments. J Mater Res 7(6):1564-1583 33. Lambropoulos JC, Fang T, Funkenbusch PD et al (1996) Surface microroughness of optical glasses under deterministic microgrinding. Appl Opt 35(22):4448-4462 34. Broitman E (2017) Indentation hardness measurements at macro-, micro-, and nanoscale: a critical overview. Tribol Lett 65:23. https://doi.org/10.1007/s11249-016-0805-5 35. Li C, Ma Y, Sun L et al (2022) An investigation into the densificationaffected deformation and fracture in fused silica under contact sliding. Micromachines 13(7):1106. https://doi.org/10.3390/mi13071106 36. Sellappan P, Rouxel T, Celarie F et al (2013) Composition dependence of indentation deformation and indentation cracking in glass. Acta Mater 61(16):5949-5965 37. Yoshida S, Sangleboeuf JC, Rouxel T (2005) Quantitative evaluation of indentation-induced densification in glass. J Mater Res 20(12):3404-3412 38. Zarudi I, Zhang LC, Zou J et al (2004) The R8-BC8 phases and crystal growth in monocrystalline silicon under microindentation with a spherical indenter. J Mater Res 19(1):332-337 39. Liu M, Zheng Q, Gao C (2020) Sliding of a diamond sphere on fused silica under ramping load. Mater Today Commun 25:101684. https://doi.org/10.1016/j.mtcomm.2020.101684 40. Suratwala T, Wong L, Miller P et al (2006) Sub-surface mechanical damage distributions during grinding of fused silica. J Non-Cryst Solids 352(52):5601-5617 |