1. Long X, Lu C, Su Y et al (2023) Machine learning framework for predicting the low cycle fatigue life of lead-free solders. Eng Fail Anal 148:107228. https://doi.org/10.1016/j.engfailanal.2023.107228 2. Hao S, Cui L, Jiang D et al (2013) A transforming metal nanocomposite with large elastic strain, low modulus, and high strength. Science 339(6124):1191-1194 3. Sun X, Zhou K, Shi S et al (2022) A new cyclical generative adversarial network based data augmentation method for multiaxial fatigue life prediction. Int J Fatigue 162:106996. https://doi.org/10.1016/j.ijfatigue.2022.106996 4. Zhang M, Sun CN, Zhang X et al (2019) High cycle fatigue life prediction of laser additive manufactured stainless steel:a machine learning approach. Int J Fatigue 128:105194. https://doi.org/10.1016/j.ijfatigue.2019.105194 5. Yang WK, Hu BL, Luo YW et al (2023) Understanding geometrical size effect on fatigue life of A588 steel using a machine learning approach. Int J Fatigue 172:107671. https://doi.org/10.1016/j.ijfatigue.2023.107671 6. Wei X, Zhang C, Han S et al (2022) High cycle fatigue S-N curve prediction of steels based on transfer learning guided long short term memory network. Int J Fatigue 163:107050. https://doi.org/10.1016/j.ijfatigue.2022.107050 7. Zhan Z, Li H (2021) Machine learning based fatigue life prediction with effects of additive manufacturing process parameters for printed SS 316L. Int J Fatigue 142:105941. https://doi.org/10.1016/j.ijfatigue.2020.105941 8. He L, Wang Z, Ogawa Y et al (2022) Machine-learning-based investigation into the effect of defect/inclusion on fatigue behavior in steels. Int J Fatigue 155:106597. https://doi.org/10.1016/j.ijfatigue.2021.106597 9. Li H, Zhang J, Hu L et al (2023) Notch fatigue life prediction of micro-shot peened 25CRMO4 alloy steel:a comparison between fracture mechanics and machine learning methods. Eng Fract Mech 277:108992. https://doi.org/10.1016/j.engfracmech.2022.108992 10. Zhou T, Sun X, Chen X (2023) A multiaxial low-cycle fatigue prediction method under irregular loading by ANN model with knowledge-based features. Int J Fatigue 176:107868. https://doi.org/10.1016/j.ijfatigue.2023.107868 11. Srinivasan V (2003) Low cycle fatigue and creep-fatigue interaction behavior of 316L (N) stainless steel and life prediction by artificial neural network approach. Int J Fatigue 25(12):1327-1338 12. Michalski RS, Carbonell JG, Mitchell TM (1983) Machine learning an artificial intelligence approach. Springer Berlin, Heidelberg 13. Jones BA, Li W, Nachtsheim CJ et al (2007) Model discrimination-another perspective on model-robust designs. J Stat Plan Infer 137:1577-1583 14. Roy A (n.d.) A novel conditional wasserstein deep convolutional generative adversarial network_supp1-3288851.PDF. https://doi.org/10.1109/tai.2023.3288851/mm1 15. Goodfellow IJ, Pouget-Abadie J, Mirza M et al.(2014) Generative adversarial networks. arXiv:1406.2661. https://arxiv.org/abs/1406.2661 16. Zhu JY, Park T, Isola P et al (2017) Unpaired image-to-image translation using cycle-consistent adversarial networks. In:IEEE international conference on computer vision (ICCV), Venice, Italy, pp 2242-2251 17. Liu MY, Tuzel O (2016) Coupled generative adversarial networks. arXiv:1606.07536. https://arxiv.org/abs/1606.07536 18. Zhang H, Goodfellow I, Metaxas D et al.(2019) Self-attention generative adversarial networks. arXiv:1805.08318. https://arxiv.org/abs/1805.08318 19. Brock A, Donahue J, Simonyan K (2019) Large scale gan training for high fidelity natural image synthesis. arXiv:1809.11096. https://arxiv.org/abs/1809.11096 20. Ma B, Wei X, Liu C et al (2020) Data augmentation in microscopic images for material data mining. NPJ Comput Mater 6(1):125. https://doi.org/10.1038/s41524-020-00392-6 21. Buehler EL, Buehler MJ (2022) End-to-end prediction of multimaterial stress fields and fracture patterns using cycle-consistent adversarial and transformer neural networks. Biomed Eng Adv 4:100038. https://doi.org/10.1016/j.bea.2022.100038 22. Liu F, Zhou S, Xia C et al (2016) Optimization of fatigue life distribution model and establishment of probabilistic S-N curves for a 165 KSI grade super high strength drill pipe steel. J Petrol Sci Eng 145:527-532 23. Li S, Xie X, Cheng C et al (2020) A modified coffin-manson model for ultra-low cycle fatigue fracture of structural steels considering the effect of stress triaxiality. Eng Fract Mech 237:107223. https://doi.org/10.1016/j.engfracmech.2020.107223 24. Farhat H (2021) Operation, maintenance, and repair of land-based gas turbines. Elsevier, Amsterdam 25. Cooper CV, Fine ME (1985) Fatigue microcrack initiation in polycrystalline alpha-iron with polished and oxidized surfaces. Metall Trans A 16(4):641-649 26. Baldi P, Sadowski P (2014) The dropout learning algorithm. ArtifIntell 210:78-122 27. Goh ATC (1995) Back-propagation neural networks for modeling complex systems. Artif Intell Eng 9(3):143-151 28. Yin L, Zhang B (2021) Time series generative adversarial network controller for long-term smart generation control of microgrids. Appl Energ 281:116069. https://doi.org/10.1016/j.apenergy.2020.116069 29. Razmjoo A, Xanthopoulos P, Zheng QP (2017) Online feature importance ranking based on sensitivity analysis. Expert Syst Appl 85:397-406 30. Coli CA, Windmeijer FAG (1997) An R-squared measure of goodness of fit for some common nonlinear regression models. J Econom 77(2):329-342 31. Miao C, Li R, Yu J (2020) Effects of characteristic parameters of corrosion pits on the fatigue life of the steel wires. J Constr Steel Res 168:105879. https://doi.org/10.1016/j.jcsr.2019.105879 32. Parzinger M, Hanfstaengl L, Sigg F et al (2022) Comparison of different training data sets from simulation and experimental measurement with artificial users for occupancy detection-using machine learning methods random forest and lasso. Build Environ 223:109313. https://doi.org/10.1016/j.buildenv.2022.109313 33. Itabashi M, Kawata K (2000) Carbon content effect on high-strain-rate tensile properties for carbon steels. Int J Impact Eng 24(2):117-131 34. Rodrigues CAD, Bandeira RM, Duarte BB et al (2016) Effect of phosphorus content on the mechanical, microstructure and corrosion properties of supermartensitic stainless steel. Mat Sci Eng A 650:75-83 35. Meiners T, Peng Z, Gault B et al (2018) Sulfur-induced embrittlement in high-purity, polycrystalline copper. Acta Mater 156:64-75 36. Jain S, Jain P, Pandey K et al (2022) Artificial intelligence, machine learning, and mental health in pandemics. https://doi.org/10.1016/c2020-0-04085-5 37. He K, Zhang X, Ren S et al (2015) Deep residual learning for image recognition. arXiv:1512.03385. https://arxiv.org/abs/1512.03385 38. Yamashita R, Nishio M, Do RKG et al (2018) Convolutional neural networks:an overview and application in radiology. Insights Imaging 9(4):611-629 39. Ana Cláudia OES, de Souza MB, da Silva FV (2022) Exploring the potential of fully convolutional neural networks for FDD of a chemical process. Comput Aided Chem Eng 49:1621-1626 40. Kurek A, Kurek M,Łagoda T (2019) Stress-life curve for high and low cycle fatigue. J Theor App Mech 57(3):677-684 |