[1] Arezki Y, Zhang XC, Mehdi-Souzani C et al (2018) Investigation of minimum zone assessment methods for aspheric shapes. Precis Eng 52:300-307 [2] Ristok S, Thiele S, Toulouse A et al (2020) Stitching-free 3D printing of millimeter-sized highly transparent spherical and aspherical optical components. Opt Mater Express 10:2370-2378 [3] Wang DD, Xu P, Wu ZD et al (2020) Simultaneous multisurface measurement of freeform refractive optics based on computer-aided deflectometry. Optica 7:1056-1064 [4] Jing HW, King C, Walker D (2010) Measurement of influence function using swing arm profilometer and laser tracker. Opt Express 18:5271-5281 [5] Martinez-Pellitero S, Cuesta E, Giganto S et al (2018) New procedure for qualification of structured light 3D scanners using an optical feature-based gauge. Opt Laser Eng 110:193-206 [6] Guo T, Zhao GH, Tang DW et al (2021) High-accuracy simultaneous measurement of surface profile and film thickness using line-field white-light dispersive interferometer. Opt Laser Eng 137:106388. https://doi.org/10.1016/j.optlaseng.2020.106388 [7] Psota P, Kredba J, Stasik M et al (2023) Absolute wavelength scanning interferometry for measuring the thickness of optical elements. Opt Express 31:3565-3578 [8] Ament SDV, Beverage J, Burge JH et al (2022) CGH-assisted metrology testbed for the thirty meter telescope primary mirror. In: Ground-based and airborne telescopes Ix. SPIE, Montréal [9] Zhang ZH, Chang CX, Liu XH et al (2021) Phase measuring deflectometry for obtaining 3D shape of specular surface: a review of the state-of-the-art. Opt Eng 60:020903. https://doi.org/10.1117/1.OE.60.2.020903 [10] Byeongjoon J, Sotero O, Henry Q et al (2023) Digital filtering of ghost signal in phase measuring deflectometry. Opt Lett 48:1642-1645 [11] Zuo C, Huang L, Zhang ML et al (2016) Temporal phase unwrapping algorithms for fringe projection profilometry: a comparative review. Opt Laser Eng 85:84-103 [12] Leung YC, Cai LL (2022) Untangling parasitic reflection in phase measuring deflectometry by multi-frequency phase-shifting. Appl Optics 61:208-222 [13] Zheng WX, Li DH, Wang RY et al (2022) Parasitic reflection separation deflectometry based on harmonic analysis. Measurement 203:111864. https://doi.org/10.1016/j.measurement.2022.111864 [14] Ye J, Niu Z, Zhang X et al (2021) Simultaneous measurement of double surfaces of transparent lenses with phase measuring deflectometry. Opt Laser Eng 137:106356. https://doi.org/10.1016/j.optlaseng.2020.106356 [15] Huang NE, Shen Z, Long SR et al (1998) The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc Roy Soc 454:903-995 [16] Lin L, Wang Y, Zhou H (2009) Iterative filtering as an alternative algorithm for empirical mode decomposition. Adv Adapt Data Anal 1(4):543-560 [17] Sfarra S, Cicone A, Yousefi B et al (2022) Maximizing the detection of thermal imprints in civil engineering composites via numerical and thermographic results pre-processed by a groundbreaking mathematical approach. Int J Therm Sci 177:107553. https://doi.org/10.1016/j.ijthermalsci.2022.107553 [18] Rogalski M, Pielach M, Cicone A et al (2022) Tailoring 2D fast iterative filtering algorithm for low-contrast optical fringe pattern preprocessing. Opt Laser Eng 155:107069. https://doi.org/10.1016/j.optlaseng.2022.107069 [19] Wang JL, Li YX, Ji YF et al (2022) Deep learning-based 3D measurements with near-infrared fringe projection. Sensors-Basel 22:6469. https://doi.org/10.3390/s22176469 [20] Guan JT, Li J, Yang X et al (2023) Error compensation for phase retrieval in deflectometry based on deep learning. Meas Sci Technol 34:025009. https://doi.org/10.1088/1361-6501/ac9c24 [21] Cicone A, Zhou HM et al (2017) Multidimensional iterative filtering method for the decomposition of high-dimensional non-stationary signals. Numer Math-Theory Me 10:278-298 [22] Krizhevsky A, Sutskever I, Hinton GE et al (2017) ImageNet classification with deep convolutional neural networks. Commun ACM 60:84-90 [23] Ronneberger O, Fischer P, Brox T et al (2015) U-Net: Convolutional networks for biomedical image segmentation. Lect Notes Comput Sc 9351:234-241 [24] He KM, Zhang XY, Ren SQ et al (2016) Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR). IEEE, Las Vegas, 2016, pp 770-778 [25] Mao XJ, Shen CH, Yang YB et al (2016) Image restoration using very deep convolutional encoder-decoder networks with symmetric skip connections. In: Advances in neural information processing systems, Barcelona, Spain [26] Xu XY, Zhang XC, Niu ZQ et al (2019) Extra-detection-free monoscopic deflectometry for the in situ measurement of freeform specular surfaces. Opt Lett 44:4271-4274 [27] Gurov I, Kapranova V, Skakov P (2021) Dynamical evaluation of interference fringe parameters by the Wiener adaptive filtering method. Appl Optics 60:6799-6808 [28] Tsai LC, Wu YT (2007) Synthesis of butterworth band-stop filters using discrete-time techniques. In: IEEE conference on electron devices and solid-state circuits. IEEE, Tainan, China. pp 733-736 [29] Mahamune R, Laskar SH (2021) Classification of the four-class motor imagery signals using continuous wavelet transform filter bank-based two-dimensional images. Int J Imag Syst Tech 31:2237-2248 [30] Diop ES, Alexandre R, Moisan L (2012) Intrinsic nonlinear multiscale image decomposition: A 2D empirical mode decomposition-like tool. Comput Vis Image Und 116:102-119 [31] Niu ZQ, Xu XY, Zhang XC et al (2019) Efficient phase retrieval of two-directional phase-shifting fringe patterns using geometric constraints of deflectometry. Opt Express 27:8195-8207 [32] Ren MJ, Cheung CF, Kong LB et al (2011) Invariant-feature-pattern-based form characterization for the measurement of ultraprecision freeform surfaces. IEEE Trans Instrum Meas 61:963-973 |