[1] Manahan MP, Argon AS, Harling OK (1981) The development of a miniaturized disk bend test for the determination of postirradiation mechanical properties. J Nucl Mater 104:1545-1550 [2] Janča A, Siegl J, Haušild P (2016) Small punch test evaluation methods for material characterisation. J Nucl Mater 481:201-213 [3] Klevtsov I, Neshumaev D, Dedov A (2009) A method of using miniature samples for determining mechanical properties of metal of power-generating equipment at thermal power stations in Estonia. Therm Eng 56:426-431 [4] Chica JC, Díez PMB, Calzada MP (2018) Development of an improved prediction method for the yield strength of steel alloys in the small punch test. Mater Des 148:153-166 [5] Li M, Liu Z, Huang L (2022) A new multi-fidelity surrogate modelling method for engineering design based on neural network and transfer learning. Eng Comput 39(6):2209-2230 [6] Liu Z, Xu H, Zhu P (2020) An adaptive multi-fidelity approach for design optimization of mesostructure-structure systems. Struct Multidiscip Optim 62:375-386 [7] Li M, Liu Z, Huang L et al (2023) Multi-fidelity data-driven optimization design framework for self-piercing riveting process parameters. J Manuf Process 99:812-824 [8] Weiss K, Khoshgoftaar TM, Wang D (2016) A survey of transfer learning. J Big data 3(1):1-40 [9] Xue Y, Yang R, Chen X et al (2023) A novel local binary temporal convolutional neural network for bearing fault diagnosis. IEEE Trans Instrum Meas 72:3525013. https://doi.org/10.1109/TIM.2023.3298653 [10] Chen X, Yang R, Xue Y et al (2023) Deep transfer learning for bearing fault diagnosis: a systematic review since 2016. IEEE Trans Instrum Mea 72:3508221. https://doi.org/10.1109/TIM.2023.3244237 [11] Li H, Wang Z, Lan C et al (2023) A novel dynamic multiobjective optimization algorithm with non-inductive transfer learning based on multi-strategy adaptive selection. IEEE Trans Neural Netw Learn Syst 35(11):16533-16547 [12] Jiao L, Huang Z, Liu X et al (2023) Brain-inspired remote sensing interpretation: a comprehensive survey. IEEE J Sel Top Appl Earth Obs Remote Sens 16:2992-3033 [13] Pan SJ, Yang Q (2009) A survey on transfer learning. IEEE Trans Knowl Data Eng 22(10):1345-1359 [14] Chen S, Yang R, Zhong M (2021) Graph-based semi-supervised random forest for rotating machinery gearbox fault diagnosis. Control Eng Pract 117:104952. https://doi.org/10.1016/j.conengprac.2021.104952 [15] Lu Q, Yang R, Zhong M et al (2019) An improved fault diagnosis method of rotating machinery using sensitive features and RLS-BP neural network. IEEE Trans Instrum Meas 69(4):1585-1593 [16] Chen S, Yang R, Zhong M et al (2023) A random forest and modelbased hybrid method of fault diagnosis for satellite attitude control systems. IEEE Trans Instrum Meas 72:1-13 [17] Lucas G (1990) Review of small specimen test techniques for irradiation testing. Metall Trans A 21:1105-1119 [18] Lucas G, Okada A, Kiritani M (1986) Parametric analysis of the disc bend test. J Nucl Mater 141:532-535 [19] Huber N, Konstantinidis A, Tsakmakis C (2001) Determination of poisson’s ratio by spherical indentation using neural networks—part I: theory. J Appl Mech 68(2):218-223 [20] Tyulyukovskiy E, Huber N (2006) Identification of viscoplastic material parameters from spherical indentation data: Part I. neural networks. J Mater Res 21(3):664-676 [21] Abendroth M, Kuna M (2003) Determination of deformation and failure properties of ductile materials by means of the small punch test and neural networks. Comput Mater Sci 28(3/4):633-644 [22] Mao X, Takahashi H (1987) Development of a further-miniaturized specimen of 3 mm diameter for tem disk (3 mm) small punch tests. J Nucl Mater 150(1):42-52 [23] Cahoon J, Broughton W, Kutzak A (1971) The determination of yield strength from hardness measurements. Metall Trans 2:1979-1983 [24] Jun C, Li FG, Sun ZK et al (2017) Tensile stress-strain behavior of metallic alloys. Trans Nonferrous Met Soc China 27(11):2443-2453 [25] Bowen A, Partridge P (1974) Limitations of the hollomon strain-hardening equation. J Phys D Appl Phys 7(7):969. https://doi.org/10.1088/0022-3727/7/7/305 [26] Zhou Z, Shin J, Zhang L (2017) Fine-tuning convolutional neural networks for biomedical image analysis: actively and incrementally. In: Proceedings of the IEEE conference on computer vision and pattern recognition, Honolulu, pp 7340-7351 [27] Sun B, Feng J, Saenko K (2017) Correlation alignment for unsupervised domain adaptation. Springer, Cham, pp 153-171 [28] Gopalan R, Ruonan Li, Chellappa R (2011) Domain adaptation for object recognition: an unsupervised approach. In: 2011 international conference on computer vision, IEEE, Barcelona, pp 999-1006 [29] Gong B, Shi Y, Sha F et al (2012) Geodesic flow kernel for unsupervised domain adaptation. In: 2012 IEEE conference on computer vision and pattern recognition, IEEE, RI, pp 2066-2073 [30] Fernando B, Habrard A, Sebban M et al (2013) Unsupervised visual domain adaptation using subspace alignment. In: 2013 IEEE international conference on computer vision, IEEE, Sydeny, pp 2960-2967 |