[1] Chen ZC, Ge SH, Jiang YL et al (2023) Refined modeling and experimental verification of a torque motor for an electro-hydraulic servo valve. Chin J Aeronaut 36(6):302-317 [2] Huang GQ, Mi JC, Yang C et al (2022) CFD-based physical failure modeling of direct-drive electro-hydraulic servo valve spool and sleeve. Sensors 22(19):7559. https://doi.org/10.3390/s22197559 [3] Li JY, Yang TY, Wang YW et al (2013) Study of electro-hydraulic force servo system based on flow press servo valve and neural network intelligent control strategy. Appl Mech Mater 427/429:1167-1170 [4] Guo H, Lin P, Pan X et al (2019) Development of an automatic grinding system for servo valve spool throttling edge. URAI 2019:718-722. https://doi.org/10.1109/URAI.2019.8768715 [5] Chern GL (2006) Experimental observation and analysis of burr formation mechanisms in face milling of aluminum alloys. Int J Mach Tools Manuf 46(12/13):1517-1525 [6] Hashimura M, Hassamontr J, Dornfeld DA (1999) Effect of in-plane exit angle and rake angles on burr height and thickness in face milling operation. J Manuf Sci Eng ASME 121(1):13-19 [7] Fu D, Ding WF, Yang SB et al (2017) Formation mechanism and geometry characteristics of exit-direction burrs generated in surface grinding of Ti-6Al-4V titanium alloy. Int J Adv Manuf Technol 89(5/8):2299-2313 [8] Régnier T, Fromentin G, Marcon B et al (2018) Fundamental study of exit burr formation mechanisms during orthogonal cutting of AlSi aluminium alloy. J Mater Process Technol 257:112-122 [9] Liu M (2021) Microscratch of copper by a Rockwell C diamond indenter under a constant load. Nanotechnol Precis Eng 4(3):033003. https://doi.org/10.1063/10.0005065 [10] Liu G, Dang J, Chen Y et al (2019) Numerical and experimental investigation on grinding-induced exit burr formation. Int J Adv Manuf Technol 103(5/8):2331-2346 [11] Liu J, Yuan W, Xiong J et al (2013) Influence of chamfer size on the two-side direction burr formed in grinding-hardening machine. Adv Mater Res 645:392-395 [12] Yang C, Huang J, Xu J et al (2021) Investigation on formation mechanism of the burrs during abrasive reaming based on the single-particle abrasive micro-cutting behavior. Int J Adv Manuf Technol 113(3/4):907-921 [13] Liu J, Wang G, Hou D et al (2008) Formation of two side-direction burr in grinding-hardening machining. Proc SPIE 7130. https://doi.org/10.1117/12.819770 [14] Wu X, Li L, He N (2017) Investigation on the burr formation mechanism in micro cutting. Precis Eng 47:191-196 [15] Chen MJ, Ni HB, Wang ZJ et al (2012) Research on the modeling of burr formation process in micro-ball end milling operation on Ti-6Al-4V. Int J Adv Manuf Technol 62(9/12):901-912 [16] Yadav R, Chakladar ND, Paul S (2022) Micro-milling of Ti-6Al-4 V with controlled burr formation. Int J Mech Sci 231:107582. https://doi.org/10.1016/j.ijmecsci.2022.107582 [17] Xu J, Gao S, Yang C (2018) Simulation of burr formation during single-pass honing of 4Cr13 stainless steel. ISSAAT 2018 [18] Ogorodov VA (2015) Prevention of burring in diamond honing. Russ Eng Res 35:221-226 [19] Xu WX, Zhang LC (2015) Ultrasonic vibration-assisted machining: principle, design and application. Adv Manuf 3(3):173-192 [20] Liang XL, Zhang CB, Cheung CF et al (2023) Micro/nano incremental material removal mechanisms in high-frequency ultrasonic vibration-assisted cutting of 316L stainless steel. Int J Mach Tools Manuf 191:104064. https://doi.org/10.1016/j.ijmachtools.2023.104064 [21] Zhang YB, Yuan ZH, Fang B et al (2023) Study on the mechanism of burr formation by simulation and experiment in ultrasonic vibration-assisted micromilling. Micromachines 14(3):625. https://doi.org/10.3390/mi14030625 [22] Chen W, Zheng L, Teng X et al (2019) Finite element simulation and experimental investigation on cutting mechanism in vibration-assisted micro-milling. Int J Adv Manuf Technol 105(11):4539-4549 [23] Xu J, Feng P, Feng F et al (2021) Subsurface damage and burr improvements of aramid fiber reinforced plastics by using longitudinal-torsional ultrasonic vibration milling. J Mater Process Technol 297:117265. https://doi.org/10.1016/j.jmatprotec.2021.117265 [24] Zhu XX, Wang WH, Jiang RS et al (2020) Research on ultrasonic-assisted drilling in micro-hole machining of the DD6 superalloy. Adv Manuf 8(3):405-417 [25] Chang SSF, Bone GM (2010) Burr height model for vibration assisted drilling of aluminum 6061-T6. Precis Eng 34(3):369-375 [26] Zai P, Tong J, Liu Z et al (2021) Analytical model of exit burr height and experimental investigation on ultrasonic-assisted high-speed drilling micro-holes. J Manuf Process 68:807-817 [27] Li S, Zhang D, Liu C et al (2020) Exit burr height mechanistic modeling and experimental validation for low-frequency vibration-assisted drilling of aluminum 7075-T6 alloy. J Manuf Process 56:350-361 [28] Xiang DH, Zhang ZM, Wu BF et al (2020) Effect of ultrasonic vibration tensile on the mechanical properties of high-volume fraction SiCp/Al composite. Int J Precisi Eng Manuf 21(11):2051-2066 [29] Gao SW, Yang CY, Xu JH (2018) Experimental study on torque and burrs during ultrasonic assisted single-pass honing of 4Cr13 stainless steel. ISAAT 2018 [30] D’Evelyn MP, Taniguchi T (1999) Elastic properties of translucent polycrystalline cubic boron nitride as characterized by the dynamic resonance method. Diam Relat Mater 8(8):1522-1526 [31] Guo YB, Yen DW (2004) A FEM study on mechanisms of discontinuous chip formation in hard machining. J Mater Process Technol 155/156:1350-1356 |