[1] Zhang B, Zeng Y, Pang X et al (2022) Feasibility analysis and process characteristics of selective laser ablation assisted milling Inconel 718. Adv Manuf 10(4):495-519 [2] Chen J, Gu L, Zhao W et al (2020) Modeling of flow and debris ejection in blasting erosion arc machining in end milling mode. Adv Manuf 8:508-518 [3] Meshcheriakov G, Nosulenko V, Meshcheriakov N et al (1988) Physical and technological control of arc dimensional machining. CIRP Ann Manuf Tech 37(1):209-212 [4] Wei B, Trimmer A, Luo Y et al (2010) Advancement in high-speed electroerosion processes for machining tough metals. In: Proceedings of the 16th international symposium on electromachining, pp 193-196, Shanghai [5] Zhao W, Gu L, Xu H et al (2013) A novel high efficiency electrical erosion process—blasting erosion arc machining. Procedia CIRP 6:621-625 [6] Krotz H, Roth R, Wegener K (2013) Experimental investigation and simulation of heat flux into metallic surfaces due to single discharges in micro-electrochemical arc machining (micro-ECAM). Int J Adv Manuf Technol 68:1267-1275 [7] Wang F, Liu Y, Zhang Y et al (2014) Compound machining of titanium alloy by super high speed EDM milling and arc machining. J Mater Process Technol 214(3):531-538 [8] Wu X, Liu Y, Zhang P et al (2023) Electrical discharge and arc milling with automatic tracking of optimal flushing direction: a novel high- efficiency compound machining method. Chin J Aeronaut 37:351-364 [9] Xu H, Gu L, Chen J et al (2015) Machining characteristics of nickel-based alloy with positive polarity blasting erosion arc machining. Int J Adv Manuf Technol 79:937-947 [10] Liu Z, Liu K, Dai X et al (2022) Milling performance of Inconel 718 based on DC short electric arc machining with graphite and W-Ag electrode materials. Int J Adv Manuf Technol 122(5):2253-2265 [11] Gu L, He G, Li K et al (2022) Improving surface quality in BEAM with optimized electrode. CIRP Ann Manuf Technol 71:165-168 [12] Kou Z, Han F, Wang G (2019) Research on machining Ti6Al4V by high-speed electric arc milling with breaking arcs via mechanical-hydrodynamic coupling forces. J Mater Process Technol 271:499-509 [13] Gu L, Zhang F, Zhao W et al (2016) Investigation of hydrodynamic arc breaking mechanism in blasting erosion arc machining. CIRP Ann Manuf Technol 65(1):233-236 [14] Guo C, Wei D, Di S (2016) Improving energy utilization efficiency of electrical discharge milling in titanium alloys machining. J Cent South Univ 23:2550-2557 [15] Li X, Li Z, Wu T et al (2023) Experimental research on short electric arc milling machining based on the mechanical-fluid coupling effect. Proc Inst Mech Eng Part B-J Eng Manuf 237(9):1353-1363 [16] He G, Gu L, Zhu Y et al (2022) Electrical arc contour cutting based on a compound arc breaking mechanism. Adv Manuf 10:583-595 [17] Nakano S, Shibayama T, Kunieda M et al (2005) Curved surface machining by dry EDM using 5-axis machine. In: Proceedings of JSPE semestrial meeting, pp 838-838, Tokyo [18] Fujiki M, Ni J, Shih AJ (2009) Investigation of the effects of electrode orientation and fluid flow rate in near-dry EDM milling. Int J Mach Tool Manuf 49(10):749-758 [19] Fujiki M, Ni J, Shih AJ (2011) Tool path planning for near-dry EDM milling with lead angle on curved surfaces. J Manuf Sci E-T Asme 133(5):051005. https://doi.org/10.1115/1.4004865 [20] Guo C, Sun S, Di S et al (2021) Experimental and simulation study of the ED-milling flow field to improve its machining performance. Int J Adv Manuf Technol 113:2513-2522 [21] Guo X, Tan L, Xie Z et al (2024) Simulation and experimentation of renewable dielectric gap flow fields in EDM. Int J Adv Manuf Technol 130(3):1935-1948 [22] Wang X, Guo H, Wu G et al (2022) Hydrodynamic arc moving mechanism in EDM of polycrystalline diamond. Mater Manuf Process 37(14):1652-1663 [23] Lin L, Liu Y, Xue W et al (2023) Improving the machined surface in electrochemical mill-grinding by particle tracking fluid simulation and experimental research. Phys Fluids 35(12):123319. https://doi.org/10.1063/5.0176244 [24] Gu L, Farhadi A, Zhu Y et al (2020) A novel tool design procedure for arc sweep machining technology. Mater Manuf Process 35(1):113-121 [25] Kou Z, Han F (2018) Machining characteristics and removal mechanisms of moving electric arcs in high-speed EDM milling. J Manuf Process 32:676-684 [26] Jiang Y, Kong L, Ping X et al (2021) Utilizing a porous-electrode for the flushing fluid in electrical discharge machining. J Manuf Process 62:248-256 [27] Li K, Wang X, Jiang L et al (2024) Study of arc behavior and machining effects of the novel magnetic field assisted blasting erosion arc machining method. J Mater Process Tech 323:118227. https://doi.org/10.1016/j.jmatprotec.2023.118227 [28] Lin Y, Lee H (2008) Machining characteristics of magnetic force-assisted EDM. Int J Mach Tools Manuf 48:1179-1186 [29] Lin Y, Chen Y, Wang D et al (2009) Optimization of machining parameters in magnetic force assisted EDM based on taguchi method. J Mater Process Technol 209:3374-3383 |