Advances in Manufacturing

• • 上一篇    下一篇

Nanodots of multiferroic oxide material BiFeO3 from the first Principles

Wei Ren1,2   

  1. 1.Department of Physics, Shanghai University, Shanghai 200444,People’s Republic of China
    2.Physics Department and Institute for Nanoscience and Engineering, University of Arkansas, Fayetteville, AR 72701,USA
  • 收稿日期:2013-04-20 修回日期:2013-05-05 出版日期:2013-06-25 发布日期:2013-05-28
  • 通讯作者: e-mail: renwei@shu.edu.cn
  • 作者简介:e-mail: renwei@shu.edu.cn

Nanodots of multiferroic oxide material BiFeO3 from the first Principles

Wei Ren1,2   

  1. 1.Department of Physics, Shanghai University, Shanghai 200444,People’s Republic of China
    2.Physics Department and Institute for Nanoscience and Engineering, University of Arkansas, Fayetteville, AR 72701,USA
  • Received:2013-04-20 Revised:2013-05-05 Online:2013-06-25 Published:2013-05-28
  • Contact: e-mail: renwei@shu.edu.cn
  • About author:e-mail: renwei@shu.edu.cn

摘要: Multiferroic nanodots can be harnessed to aid the development of the next generation of nonvolatile data storage and multi-functional devices. In this paper, we review the computational aspects of multiferroic nanodot materials and designs that hold promise for the future memory technology. Conception, methodology, and systematical studies are discussed, followed by some up-to-date experimental progress towards the ultimate limits. At the end of this paper, we outline some challenges remaining in multiferroic research, and how the first principles based approach can be employed as an important tool providing critical information to understand the emergent phenomena in multiferroics.

关键词: Multiferroic,  , Nanodot,  , Vortex , Memory

Abstract: Multiferroic nanodots can be harnessed to aid the development of the next generation of nonvolatile data storage and multi-functional devices. In this paper, we review the computational aspects of multiferroic nanodot materials and designs that hold promise for the future memory technology. Conception, methodology, and systematical studies are discussed, followed by some up-to-date experimental progress towards the ultimate limits. At the end of this paper, we outline some challenges remaining in multiferroic research, and how the first principles based approach can be employed as an important tool providing critical information to understand the emergent phenomena in multiferroics.

Key words: Multiferroic,  , Nanodot,  , Vortex , Memory