1. Miguélez MH, Soldani X, Molinari A (2013) Analysis of adiabatic shear banding in orthogonal cutting of Ti alloy. Int J Mech Sci 75:212-222 2. Sun J, Wu YH, Zhou P et al (2017) Simulation and experimental research on Si3N4 ceramic grinding based on different diamond grains. Adv Mech Eng 9(6):1-12 3. Wu CJ, Li BZ, Liu Y et al (2017) Surface roughness modeling for grinding of silicon carbide ceramics considering co-existence of brittleness and ductility. Int J Mech Sci 133:167-177 4. Schnurbusch G, Brinksmeier E, Riemer O (2017) Influence of cutting speed on subsurface damage morphology and distribution in ground fused silica. Inventions 2(3):15. https://doi.org/10.3390/inventions2030015 5. Chen X, Xu J, Fang H et al (2017) Influence of cutting parameters on the ductile-brittle transition of single-crystal calcium fluoride during ultra-precision cutting. Int J Adv Manuf Technol 89:219-225 6. Ma L, Li C, Chen J et al (2017) Prediction model and simulation of cutting force in turning hard-brittle materials. Int J Adv Manuf Technol 91:165-174 7. Huang H, Yin L, Zhou LB (2003) High speed grinding of silicon nitride with resin bond diamond wheels. J Mater Process Technol 141:329-336 8. Wu C, Pang J, Li B (2019) High-speed grinding of HIP-SiC ceramics on transformation of microscopic features. Int J Adv Manuf Technol 102:1913-1921 9. Li J, Fang Q, Zhang LC et al (2015) Subsurface damage mechanism of high-speed grinding process in single crystal silicon revealed by atomistic simulations. Appl Surf Sci 24:464-474 10. Li J, Fang Q, Liu Y et al (2014) A molecular dynamics investigation into the mechanisms of subsurface damage and material removal of monocrystalline copper subjected to nanoscale high speed grinding. Appl Surf Sci 303:331-343 11. Goel S, Faisal NH, Luo XC et al (2014) Nanoindentation of polysilicon and single crystal silicon:molecular dynamics simulation and experimental validation. J Phys D Appl Phys 47:275304 12. Choi DH, Lee JR, Kang NR et al (2017) Study on ductile mode machining of single-crystal silicon by mechanical machining. Int J Mach Tools Manuf 113:1-9 13. Yang X, Qiu ZJ, Lu C et al (2017) Modeling the strain rate sensitivity on the subsurface damages of scratched glass ceramics. Ceram Int 43:12930-12938 14. Young HT, Liao HT, Huang HY (2007) Novel method to investigate the critical depth of cut of ground silicon wafer. J Mater Process Technol 182:157-162 15. Liu HJ, Dong ZG, Kang RK et al (2015) Analysis of factors affecting gravity-induced deflection for large and thin wafers in flatness measurement using three-point method. Metrol Meas Syst 22:531-546 16. Janssen G, Abdalla MM, Van Keulen F et al (2009) Celebrating the 100th anniversary of the Stoney equation for film stress:developments from polycrystalline steel strips to single crystal silicon wafers. Thin Solid Films 517(6):1858-1867 17. Nix WD (1989) Mechanical properties of thin films. Metall Mater Trans A 20(11):2217-2245 18. Andre DL, Morgan MN, Rowe BW (2013) High efficiency deep grinding with very high removal rates. Int J Adv Manuf Technol 66:1367-1377 19. Bifano TG, Dow TA, Scattergood RO (1991) Ductile-regime grinding:a new technology for machining brittle materials. J Eng Ind ASME 113:184-189 20. Wu CJ, Li BZ, Liang SY (2016) A critical energy model for brittle-ductile transition in grinding considering wheel speed and chip thickness effects. J Eng Manuf 230:1372-1380 21. Lawn BR, Evans AG, Marshall DB (1980) Elastic/plastic indentation damage in ceramics:the median/radial crack system. J Am Ceram Soc 63:9-10 22. Atrash F, Sherman D (2012) Dynamic fracture instabilities in brittle crystals generated by thermal phono emission:experiments and atomistic calculations. J Mech Phys Solids 60:844-856 23. Pei ZJ, Strasbaugh A (2002) Fine grinding of the silicon wafers:designed experiments. Int J Mach Tools Manuf 42:395-404 |