1. Cai J, Li F, Liu T et al (2011) Constitutive equations for elevated temperature flow stress of Ti-6Al-4V alloy considering the effect of strain. Mater Design 32: 1144–1151 2. Leuders S, Th?ne M, Riemer A et al (2013) On the mechanical behaviour of titanium alloy TiAl6V4 manufactured by selective laser melting: fatigue resistance and crack growth performance. Int J Fatigue 48: 300–307 3. Ming W, Chen J, An Q et al (2019) Dynamic mechanical properties and machinability characteristics of selective laser melted and forged Ti6Al4V. J Mater Process Technol 271: 284–292 4. Vandenbroucke B, Kruth JP (2007) Selective laser melting of biocompatible metals for rapid manufacturing of medical parts. Rapid Prototyping J 13: 196–203 5. Liu J, Sun Q, Zhou C et al (2019) Achieving Ti6Al4V alloys with both high strength and ductility via selective laser melting. Mat Sci Eng A 766: 138319. https://doi.org/10.1016/j.msea.2019.138319 6. Waqar S, Sun Q, Liu J et al (2020) Numerical investigation of thermal behavior and melt pool morphology in multi-track multi-layer selective laser melting of the 316L steel. Int J Adv Manuf Tech 112(3/4): 879–895 7. Rao H, Giet S, Yang K et al (2016) The influence of processing parameters on aluminium alloy A357 manufactured by selective laser melting. Mater Design 109: 334–346 8. Gockel J, Sheridan L, Koerper B et al (2019) The influence of additive manufacturing processing parameters on surface roughness and fatigue life. Int J Fatigue 124: 380–388 9. Wang Z, Xiao Z, Tse Y et al (2019) Optimization of processing parameters and establishment of a relationship between microstructure and mechanical properties of SLM titanium alloy. Opt Laser Technol 112: 159–167 10. Kasperovich G, Haubrich J, Gussone J et al (2016) Correlation between porosity and processing parameters in TiAl6V4 produced by selective laser melting. Mater Design 105: 160–170 11. Wang X, Yu J, Liu J et al (2020) Effect of process parameters on the phase transformation behavior and tensile properties of NiTi shape memory alloys fabricated by selective laser melting. Addit Manuf 36: 101545. https://doi.org/10.1016/j.addma.2020.101545 12. Bidare P, Jiménez A, Hassanin H et al (2021) Porosity, cracks, and mechanical properties of additively manufactured tooling alloys: a review. Adv Manuf. https://doi.org/10.1007/s40436-021-00365-y 13. Pegues JW, Shao S, Shamsaei N et al (2020) Fatigue of additive manufactured Ti-6Al-4V, Part I: The effects of powder feedstock, manufacturing, and post-process conditions on the resulting microstructure and defects. Int J Fatigue 132: 105358. https://doi.org/10.1016/j.ijfatigue.2019.105358 14. Dilip JJS, Zhang S, Teng C et al (2017) Influence of processing parameters on the evolution of melt pool, porosity, and microstructures in Ti-6Al-4V alloy parts fabricated by selective laser melting. Prog Addit Manuf 2: 157–167 15. Cunningham R, Zhao C, Parab N et al (2019) Keyhole threshold and morphology in laser melting revealed by ultrahigh-speed X-ray imaging. Science 363: 849–852 16. Zhao C, Parab ND, Li X et al (2020) Critical instability at moving keyhole tip generates porosity in laser melting. Science 370: 1080–1086 17. Pal S, Gubeljak N, Hudak R et al (2019) Tensile properties of selective laser melting products affected by building orientation and energy density. Mat Sci Eng A 743: 637–647 18. Simonelli M, Tse YY, Tuck C (2014) Effect of the build orientation on the mechanical properties and fracture modes of SLM Ti-6Al-4V. Mat Sci Eng A 616: 1–11 19. Gupta MK, Singla AK, Ji H et al (2020) Impact of layer rotation on micro-structure, grain size, surface integrity and mechanical behaviour of SLM Al-Si-10Mg alloy. J Mater Res Technol 9: 9506–9522 20. Ma M, Wang Z, Zeng X (2015) Effect of energy input on microstructural evolution of direct laser fabricated IN718 alloy. Mater Charact 106: 420–427 21. Ali H, Ma L, Ghadbeigi H et al (2017) In-situ residual stress reduction, martensitic decomposition and mechanical properties enhancement through high temperature powder bed pre-heating of selective laser melted Ti6Al4V. Mat Sci Eng A 695: 211–220 22. He B, Wu W, Zhang L et al (2018) Microstructural characteristic and mechanical property of Ti6Al4V alloy fabricated by selective laser melting. Vacuum 150: 79–83 23. Leon A, Katarivas LG, Ron T et al (2020) The effect of strain rate on stress corrosion performance of Ti6Al4V alloy produced by additive manufacturing process. J Mater Res Technol 9: 4097–4105 24. Xu W, Sun S, Elambasseril J et al (2015) Ti-6Al-4V additively manufactured by selective laser melting with superior mechanical properties. JOM 67: 668–673 25. Waqar S, Liu J, Sun Q et al (2020) Effect of post-heat treatment cooling on microstructure and mechanical properties of selective laser melting manufactured austenitic 316L stainless steel. Rapid Prototyp J 26: 1739–1749 26. Cabrini M, Lorenzi S, Pastore T et al (2016) Effect of heat treatment on corrosion resistance of DMLS AlSi10Mg alloy. Electrochim Acta 206: 346–355 27. Ju J, Li J, Yang C et al (2021) Evolution of the microstructure and optimization of the tensile properties of the Ti-6Al-4V alloy by selective laser melting and heat treatment. Mat Sci Eng A 802: 140673. https://doi.org/10.1016/j.msea.2020.140673 28. Frkan M, Konecna R, Nicoletto G et al (2019) Microstructure and fatigue performance of SLM-fabricated Ti6Al4V alloy after different stress-relief heat treatments. Transport Res Procedia 40: 24–29 29. Lu Y, Wu S, Gan Y et al (2016) Microstructure, mechanical property and metal release of As-SLM CoCrW alloy under different solution treatment conditions. J Mech Behav Biomed Mater 55: 179–190 30. Vrancken B, Thijs L, Kruth J et al (2012) Heat treatment of Ti6Al4V produced by selective laser melting: microstructure and mechanical properties. J Alloy Compd 541: 177–185 31. Liang Z, Sun Z, Zhang W et al (2019) The effect of heat treatment on microstructure evolution and tensile properties of selective laser melted Ti6Al4V alloy. J Alloy Compd 782: 1041–1048 32. DebRoy T, Wei HL, Zuback JS et al (2018) Additive manufacturing of metallic components: process, structure and properties. Prog Mater Sci 92: 112–224 33. Singla AK, Banerjee M, Sharma A et al (2021) Selective laser melting of Ti6Al4V alloy: process parameters, defects and post-treatments. J Manuf Process 64: 161–187 34. Jin N, Yan Z, Wang Y et al (2021) Effects of heat treatment on microstructure and mechanical properties of selective laser melted Ti-6Al-4V lattice materials. Int J Mech Sci 190: 106042 35. Wu M, Lai P, Chen J (2016) Anisotropy in the impact toughness of selective laser melted Ti-6Al-4V alloy. Mat Sci Eng A 650: 295–299 36. Wu M, Lai P (2016) The positive effect of hot isostatic pressing on improving the anisotropies of bending and impact properties in selective laser melted Ti-6Al-4V alloy. Mat Sci Eng A 658: 429–438 37. Yan X, Yin S, Chen C et al (2018) Effect of heat treatment on the phase transformation and mechanical properties of Ti6Al4V fabricated by selective laser melting. J Alloy Compd 764: 1056–1071 38. Gong H, Rafi K, Gu H et al (2015) Influence of defects on mechanical properties of Ti-6Al-4V components produced by selective laser melting and electron beam melting. Mater Design 86: 545–554 39. Han L, Che S (2018) An overview of materials with triply periodic minimal surfaces and related geometry: from biological structures to self-assembled systems. Adv Mater 30: 1705708. https://doi.org/10.1002/adma.201705708 40. Heeling T, Cloots M, Wegener K (2017) Melt pool simulation for the evaluation of process parameters in selective laser melting. Addit Manuf 14: 116–125 41. Tan P, Shen F, Li B et al (2019) A thermo-metallurgical-mechanical model for selective laser melting of Ti6Al4V. Mater Design 168: 107642. https://doi.org/10.1016/j.matdes.2019.107642 42. Shipley H, McDonnell D, Culleton M et al (2018) Optimisation of process parameters to address fundamental challenges during selective laser melting of Ti-6Al-4V: a review. Int J Mach Tool Manu 128: 1–20 43. Xu Y, Lu Y, Sundberg KL et al (2017) Effect of annealing treatments on the microstructure, mechanical properties and corrosion behavior of direct metal laser sintered Ti-6Al-4V. J Mater Eng Perform 26: 2572–2582 44. Toptan F, Alves AC, Carvalho ó et al (2019) Corrosion and tribocorrosion behaviour of Ti6Al4V produced by selective laser melting and hot pressing in comparison with the commercial alloy. J Mater Process Tech 266: 239–245 45. Sing SL, Yeong WY, Wiria FE (2016) Selective laser melting of titanium alloy with 50 wt% tantalum: microstructure and mechanical properties. J Alloy Compd 660: 461–470 46. Liu YJ, Li SJ, Wang HL et al (2016) Microstructure, defects and mechanical behavior of beta-type titanium porous structures manufactured by electron beam melting and selective laser melting. Acta Mater 113: 56–67 47. Liu Y, Yang Y, Mai S et al (2015) Investigation into spatter behavior during selective laser melting of AISI 316L stainless steel powder. Mater Design 87: 797–806 48. Rabadia CD, Liu YJ, Cao GH et al (2018) High-strength β stabilized Ti-Nb-Fe-Cr alloys with large plasticity. Mat Sci Eng A 732: 368–777 49. Liu C, Qin J, Feng Z et al (2018) Improving the microstructure and mechanical properties of Zr-Ti alloy by nickel addition. J Alloy Compd 737: 405–411 50. Donnadieu P, Pohlmann C, Scudino S et al (2014) Deformation at ambient and high temperature of in situ Laves phases-ferrite composites. Sci Technol Adv Mater 15: 34801. https://doi.org/10.1088/1468-6996/15/3/034801 51. Waqar S, Guo K, Sun J (2021) FEM analysis of thermal and residual stress profile in selective laser melting of 316L stainless steel. J Manuf Process 66: 81–100 52. Khorasani A, Gibson I, Awan US et al (2019) The effect of SLM process parameters on density, hardness, tensile strength and surface quality of Ti-6Al-4V. Addit Manuf 25: 176–186 53. Zhan Y, Xu H, Du W et al (2021) Research on the influence of heat treatment on residual stress of TC4 alloy produced by laser additive manufacturing based on laser ultrasonic technique. Ultrasonics 115: 106466. https://doi.org/10.1016/j.ultras.2021.106466 54. Yan X, Shi C, Liu T et al (2020) Effect of heat treatment on the corrosion resistance behavior of selective laser melted Ti6Al4V ELI. Surf Coat Tech 396: 125955. https://doi.org/10.1016/j.surfcoat.2020.125955 55. Liu L, Ding Q, Zhong Y et al (2018) Dislocation network in additive manufactured steel breaks strength-ductility trade-off. Mater Today 21: 354–361 |