1. Makoto K, Yoshimasa F, Kazuhiro O et al (1996) Estimation of tensile shear strength of spot welded joint of steel sheets. Q J Jpn Weld Soc 14(4):754-761 2. Oikawa H, Murayama G, Hiwatashi S et al (2007) Resistance spot weldability of high strength steel sheets for automobiles and the quality assurance of joints. Weld World 51(3):7-18 3. Pouranvari M, Asgari HR, Mosavizadch SM et al (2007) Effect of weld nugget size on overload failure mode of resistance spot welds. Sci Technol Weld Joi 12(3):217-225 4. Sun DQ, Lang B, Sun DX et al (2007) Microstructures and mechanical properties of resistance spot welded magnesium alloy joints. Mater Sci Eng A 460:494-498 5. Sim J, Kim KY (2018) Hybrid nugget diameter prediction for resistance spot welding. Procedia Manuf 17:395-402 6. Birada AK, Dabade BM (2020) Optimization of resistance spot welding process parameters in dissimilar joint of MS and ASS 304 sheets. Mater Today Proc 26(2):1284-1288 7. Luo Y, Li CT, Xu HB (2009) Regression modeling and process analysis of resistance spot welding on galvanized steel sheet. Mater Des 30(7):2547-2555 8. Pandya KS, Grolleau V, Roth CC et al (2020) Fracture response of resistance spot welded dual phase steel sheets:experiments and modeling. Int J Mech Sci 187:105869. https://doi.org/10.1016/j.ijmecsci.2020.105869 9. Kumar A, Ghosh GK, Panda S et al (2020) Numerical simulation of weld nugget in resistance spot welding process. Mater Today Proc 27:2958-2963 10. Andersson O, Melander A (2015) Prediction and verification of resistance spot welding results of ultra-high strength steels through FE simulations. Model Numer Simul Mater Sci 5(1):26-37 11. Eisazadeh H, Hamedi M, Halvaee A (2010) New parametric study of nugget size in resistance spot welding process using finite element method. Mater Des 31(1):149-157 12. Hussein HK, Shareef IR, Zayer IA (2019) Prediction of spot welding parameters using fuzzy logic controlling. Eastern-Eur J Enterp Technol 5(2):57-64 13. Thongchai A, Kawin S, Phisut A et al (2014) Resistance spot welding optimization based on artificial neural network. Int J Manuf Eng 2014:154784. https://doi.org/10.1155/2014/154784 14. Mallaradhya HM, Kumar MV, Chandra MSV (2022) Optimization of parameters and prediction of response values using regression and ANN model in resistance spot welding of 17-4 precipitation hardened stainless steel. J Adv Manuf Syst 21(2):275-291 15. Tan Y, Fang P, Zhang Y et al (1999) Evaluating nugget sizes of spot welds by using artificial neural network. In:Proceedings of the 6th international conference on computational intelligence, theory and applications:fuzzy days, 25-28 May, Springer, Berlin 16. Panza L, Bruno G, Antal G et al (2024) Machine learning tool for the prediction of electrode wear effect on the quality of resistance spot welds. Int J Interact Des Manuf. https://doi.org/10.1007/s12008-023-01733-7 17. Kitano H, Nakamura T (2018) Combined artificial neural network and least squares method for exploring relationships between welding conditions and weld characteristics. Weld Lett. https://doi.org/10.2207/qjjws.36.5WL 18. Kitano H, Nakamura T (2019) Automatic derivation of empirical formulas for characteristics of weld joints using machine learning based technique. J Jpn Weld Soc 88(7):532-535 19. Kitano H (2019) Numeric law discovery and knowledge extraction from welding phenomena using machine learning technique. Mater Jpn 58(8):449-452 20. Kitano H, Sato A, Iyota M et al (2021) Investigation of relationship between resistance spot welding condition and nugget shape by utilizing machine learning based technique. Weld Int 33(4/6):223-230 21. Gavidel SR, Jeremy L (2019) Performance analysis and comparison of machine learning algorithms for predicting nugget width of resistance spot welding joints. Int J Adv Manuf Technol 105:3779-3796 22. Li M, Liu Z, Huang L et al (2022) Automatic identification framework of the geometric parameters on self-piercing riveting cross-section using deep learning. J Manuf Process 83:427-437 23. Zhang Z, Wen G, Chen S (2019) Weld image deep learning-based on-line defects detection using convolutional neural networks for Al alloy in robotic arc welding. J Manuf Process 45:208-216 24. Dai W, Li D, Tang D et al (2021) Deep learning assisted vision inspection of resistance spot welds. J Manuf Process 62(8):262-274 25. Park C, Haftka RT, Kim NH (2017) Remarks on multi-fidelity surrogates. Struct Multidiscip Optim 55:1029-1050 26. Zhang X, Xie F, Ji T et al (2021) Multi-fidelity deep neural network surrogate model for aerodynamic shape optimization. Comput Method Appl Mech Eng 373:113485. https://doi.org/10.1016/j.cma.2020.113485 27. Zhang Y, Kim NH, Park C et al (2017) Multi-fidelity surrogate based on single linear regression. AIAA J 56(12):1-9 28. Li M, Liu Z, Huang L et al (2023) Multi-fidelity data-driven optimization design framework for self-piercing riveting process parameters. J Manuf Process 99:812-824 |