1. da Silva LFM,Öchsner A, Adams RD (2018) Introduction to adhesive bonding technology. In:da Silva LFM,Öchsner A, Adams RD (eds) Handbook of adhesion technology, Springer, Cham, pp 1-7 2. Schijve J (2009) Fatigue of joints. In:fatigue of structures and materials. Springer, Dordrecht, pp 499-533 3. Wit FM, Poulis JA (2012) Joining technologies for automotive components. In:Rowe J (ed) Advanced materials in automotive engineering, Woodhead Publishing, Sawston, pp 315-329 4. Satheeshkumar V, Narayanan RG, Gunasekera JS (2023) Sustainable manufacturing. In:sustainable manufacturing processes. Elsevier, Amsterdam, pp 53-112 5. Abdel WMM (2012) Fatigue in adhesively bonded joints:a review. ISRN Mater Sci 2012:1-25 6. Da Costa Mattos HS, Monteiro AH, Palazzetti R (2012) Failure analysis of adhesively bonded joints in composite materials. Mater Des 33:242-247 7. Beber VC, Schneider B (2020) Fatigue of structural adhesives under stress concentrations:notch effect on fatigue strength, crack initiation and damage evolution. Int J Fatigue 140:105824. https://doi.org/10.1016/j.ijfatigue.2020.105824 8. Donough MJ, Gunnion AJ, Orifici AC et al (2015) Plasticity induced crack closure in adhesively bonded joints under fatigue loading. Int J Fatigue 70:440-450 9. Sonsino C (2007) Course of SN-curves especially in the high-cycle fatigue regime with regard to component design and safety. Int J Fatigue 29:2246-2258 10. He X (2011) A review of finite element analysis of adhesively bonded joints. Int J Adhes Adhes 31:248-264 11. Nolting A, Underhill P, DuQuesnay D et al (2008) Fatigue behavior of adhesively bonded aluminium double strap joints. J Astm Int. https://doi.org/10.1520/JAI101559 12. Gao ZZ, Yue ZF (2007) Fatigue failure of polyethylene methacrylate in adhesive assembly under unsymmetrical bending. Theoret Appl Fract Mech 48:89-96 13. Romanko J, Liechti KM, Knauss WG (1984) Life prediction methodology for adhesively bonded joints. In:Mittal KL (ed) Adhesive joints:formation, characteristics, and testing, Springer, Boston, pp 567-586 14. Kumar S, Pandey PC (2011) Fatigue life prediction of adhesively bonded single lap joints. Int J Adhes Adhes 31:43-47 15. Shenoy V, Ashcroft IA, Critchlow GW et al (2010) Unified methodology for the prediction of the fatigue behaviour of adhesively bonded joints. Int J Fatigue 32:1278-1288 16. Khoramishad H, Crocombe AD, Katnam KB et al (2010) Predicting fatigue damage in adhesively bonded joints using a cohesive zone model. Int J Fatigue 32:1146-1158 17. Abdel WMM, Ashcroft IA, Crocombe AD et al (2004) Finite element prediction of fatigue crack propagation lifetime in composite bonded joints. Compos A Appl Sci Manuf 35:213-222 18. LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521:436-444 19. Butler KT, Davies DW, Cartwright H et al (2018) Machine learning for molecular and materials science. Nature 559:547-555 20. Bhadeshia HKDH (2009) Neural networks and information in materials science. Stat Anal Data Min 1:296-305 21. Gan L, Wu H, Zhong Z (2022) Fatigue life prediction considering mean stress effect based on random forests and kernel extreme learning machine. Int J Fatigue 158:106761. https://doi.org/10.1016/j.ijfatigue.2022.106761 22. Liang T, Yin A, Pan M et al (2022) Gaussian process flow and physical model fusion driven fatigue evaluation model using Kalman filter. Int J Fatigue 165:107182. https://doi.org/10.1016/j.ijfatigue.2022.107182 23. Karolczuk A, Skibicki D, Pejkowski L (2022) Gaussian process for machine learning-based fatigue life prediction model under multiaxial stress-strain conditions. Materials 15:7797. https://doi.org/10.3390/ma15217797 24. Farid M (2022) Data-driven method for real-time prediction and uncertainty quantification of fatigue failure under stochastic loading using artificial neural networks and Gaussian process regression. Int J Fatigue 155:106415. https://doi.org/10.1016/j.ijfatigue.2021.106415 25. Lyathakula KR, Yuan FG (2021) A probabilistic fatigue life prediction for adhesively bonded joints via ANNs-based hybrid model. Int J Fatigue 151:106352. https://doi.org/10.1016/j.ijfatigue.2021.106352 26. Chen Q, Guo H, Avery K et al (2017) Fatigue performance and life estimation of automotive adhesive joints using a fracture mechanics approach. Eng Fract Mech 172:73-89 27. Prastyo PH, Ardiyanto I, Hidayat R (2020) A review of feature selection techniques in sentiment analysis using filter, wrapper, or hybrid methods. In:20206th international conference on science and technology, Yogyakarta, Indonesia, 2020, pp 1-6. https://doi.org/10.1109/ICST50505.2020.9732885 28. Mangalathu S, Hwang SH, Jeon JS (2020) Failure mode and effects analysis of RC members based on machine-learning-based Shapley additive explanations (SHAP) approach. Eng Struct 219:110927. https://doi.org/10.1016/j.engstruct.2020.110927 29. Hastie T, Tibshirani R, Friedman J (2009) The elements of statistical learning. Springer, New York 30. Breiman L (2001) Random forests. Mach Learn 45:5-32 31. Tognan A, Laurenti L, Salvati E (2022) Contour method with uncertainty quantification:a robust and optimized framework via Gaussian process regression. Exp Mech 62:1305-1317 |