1. Ubertalli G, D'Aiuto F, Plano S et al (2016) High strain rate behavior of aluminum die cast components. Procedia Struct Integr 2:3617-3624 2. Zhang Y, Tan W, Zheng J et al (2023) Quantitative analysis of 3D pore characteristics effect on the ductility of HPDC Al-10Si-0.3 Mg alloy through X-Ray tomography. J Mater Res Technol 26:8079-8096 3. Dou K, Lordan E, Zhang Y et al (2021) A novel approach to optimize mechanical properties for aluminium alloy in high pressure die casting (HPDC) process combining experiment and modelling. J Mater Process Technol 296:117193. https://doi.org/10.1016/j.jmatprotec.2021.117193 4. Liu R, Zheng J, Godlewski L et al (2020) Influence of pore characteristics and eutectic particles on the tensile properties of Al-Si-Mn-Mg high pressure die casting alloy. Mater Sci Eng A 783:139280. https://doi.org/10.1016/j.msea.2020.139280 5. Zhang Y, Lordan E, Dou K et al (2020) Influence of porosity characteristics on the variability in mechanical properties of high pressure die casting (HPDC) AlSi7MgMn alloys. J Manuf Process 56:500-509 6. Yan P, Mao W, Fan J et al (2020) Microstructural evolution, segregation and fracture behavior of A390 alloy prepared by combined Rheo-HPDC processing and Sr-modifier. J Alloys Compd 835:155297. https://doi.org/10.1016/j.jallcom.2020.155297 7. Lin B, Fan T, Yu LH et al (2021) Microstructure and high temperature tensile properties of Al-Si-Cu-Mn-Fe alloys prepared by semi-solid thixoforming. Trans Nonferrous Met Soc China 31:2232-2249 8. Taylor JA (2012) Iron-containing intermetallic phases in Al-Si based casting alloys. Procedia Mater Sci 1:19-33 9. Faragallah OS, El-Hoseny HM, El-sayed HS (2023) Efficient brain tumor segmentation using OTSU and K-means clustering in homomorphic transform. Biomed Signal Process Control 84:104712. https://doi.org/10.1016/j.bspc.2023.104712 10. Pandey B (2023) Separating the blue cloud and the red sequence using Otsu's method for image segmentation. Astron Comput 44:100725. https://doi.org/10.1016/j.ascom.2023.100725 11. Jiang Y, Hu K, Zhang X et al (2023) A saturation channel detection method for surface defects of silicon nitride bearing rollers based on adaptive gamma correction-edge threshold segmentation coupling algorithm. Mater Today Commun 36:106397. https://doi.org/10.1016/j.mtcomm.2023.106397 12. Dong YB, Li MJ, Sun Y (2014) Research on threshold segmentation algorithms. Adv Mater Res 860/863:2888-2891 13. Wescoat E, Krugh M, Henderson A et al (2019) Vibration analysis utilizing unsupervised learning. Procedia Manuf 34:876-884 14. Chen LC, Zhu Y, Papandreou G et al (2018) Encoder-decoder with atrous separable convolution for semantic image segmentation. In:Proceedings of the European conference on computer vision (ECCV), Springer, Munich. pp 801-818 15. Rajamani KT, Rani P, Siebert H et al (2023) Attention-augmented U-net (AA-U-net) for semantic segmentation. Signal Image Video Process 17:981-989 16. Feng C, Zhong Y, Gao Y et al (2021) Tood:task-aligned one-stage object detection. In:2021 IEEE/CVF international conference on computer vision (ICCV), Montreal, Canada, 10-17 October 17. Bolya D, Zhou C, Xiao F et al (2019) Yolact:real-time instance segmentation. In:Proceedings of the IEEE/CVF international conference on computer vision (ICCV) Seoul, Korea, 27 October-2 November. pp 9157-9166 18. Weiler JP, Wood JT (2009) Modeling fracture properties in a die-cast AM60B magnesium alloy II-the effects of the size and location of porosity determined using finite element simulations. Mater Sci Eng A 527(1/2):32-37 19. Vanderesse N, MaireÉ, Chabod A et al (2011) Microtomographic study and finite element analysis of the porosity harmfulness in a cast aluminium alloy. Int J Fatigue 33(12):1514-1525 20. Chen H, Yang Y, Cao S et al (2021) Fatigue life prediction of aluminum alloy 6061 based on defects analysis. Int J Fatigue 147:106189. https://doi.org/10.1016/j.ijfatigue.2021.106189 21. Zhang Y, Shen F, Zheng J et al (2022) Ductility prediction of HPDC aluminum alloy using a probabilistic ductile fracture model. Theor Appl Fract Mech 119:103381. https://doi.org/10.1016/j.tafmec.2022.103381 22. Zhang W, Jing H, Xu L et al (2015) Numerical investigation of creep crack initiation in P92 steel pipes with embedded spherical defects under internal pressure at 650℃. Eng Fract Mech 139:40-55 23. Poroshin V, Shlishevsky A (2019) The forecasting of deformational and strength properties of metals with uniformly scattered defects in form of spherical hollows at single and cyclic loading. Mater Today Proc 11:58-65 24. Chan LC, Lu XZ, Yu KM (2015) Multiscale approach with RSM for stress-strain behaviour prediction of micro-void-considered metal alloy. Mater Des 83:129-137 25. Dong X, Yang H, Zhu X et al (2019) High strength and ductility aluminium alloy processed by high pressure die casting. J Alloys Compd 773:86-96 26. Sadayappan K, Birsan G, Caron F et al (2017) High pressure die casting aluminum alloys for automotive structural applications. Die Cast Eng 6(61):8-18 27. Bargmann S, Klusemann B, Markmann J et al (2018) Generation of 3D representative volume elements for heterogeneous materials:a review. Prog Mater Sci 96:322-384 28. Matouš K, Geers MGD, Kouznetsova VG et al (2017) A review of predictive nonlinear theories for multiscale modeling of heterogeneous materials. J Comput Phys 330:192-220 29. Chen B, Peng X, Fan J et al (2005) A constitutive description for casting aluminum alloy A104 based on the analysis of cylindrical and spherical void models. Int J Plast 21:2232-2253 30. Zhang Y, Li J, Shen F et al (2022) Microstructure-property relationships in HPDC Aural-2 alloy:experimental and CP modeling approaches. Mater Sci Eng A 848:143364. https://doi.org/10.1016/j.msea.2022.143364 31. Mohr D, Treitler R (2008) Onset of fracture in high pressure die casting aluminum alloys. Eng Fract Mech 75:97-116 32. Wang Y, Dantcheva A (2020) A video is worth more than 1000 lies. Comparing 3DCNN approaches for detecting deepfakes. In:15th IEEE international conference on automatic face and gesture recognition (FG 2020), Buenos Aires, Argentina, 16-20 November. pp 515-519 33. Chua LO, Roska T (1993) The CNN paradigm. IEEE Trans Circuits Syst I Fundam Theory Appl 40(3):147-156 34. Akiba T, Sano S, Yanase T et al (2019) Optuna:a next-generation hyperparameter optimization framework. In:Proceedings of the 25th ACM SIGKDD international conference on knowledge discovery&data mining (KDD'19). Association for Computing Machinery, New York. pp 2623-2631 |