1. Eiamsa-Ard K, Wannissorn K (2015) Conformal bubbler cooling for molds by metal deposition process. CAD Comput Aided Des 69:126-133 2. Soshi M, Ring J, Young C et al (2017) Innovative grid molding and cooling using an additive and subtractive hybrid CNC machine tool. CIRP Ann-Manuf Technol 66:401-404 3. Gibson LJ, Ashby MF (1988) Cellular Solids:Structure & Properties. Pergamon Press, UK 4. Cheng L, Liu J, Liang X et al (2018) Coupling lattice structure topology optimization with design-dependent feature evolution for additive manufactured heat conduction design. Comput Methods Appl Mech Eng 332:408-439 5. Wu T, Jahan SA, Zhang Y et al (2017) Design Optimization of Plastic Injection Tooling for Additive Manufacturing. Procedia Manuf 10:923-934 6. Yun S, Kwon J, Lee DC et al (2020) Heat transfer and stress characteristics of additive manufactured FCCZ lattice channel using thermal fluid-structure interaction model. Int J Heat Mass Transf 149:119187 7. Mahshid R, Hansen HN, Højbjerre KL (2016) Strength analysis and modeling of cellular lattice structures manufactured using selective laser melting for tooling applications. Mater Des 104:276-283 8. Brooks H, Brigden K (2016) Design of conformal cooling layers with self-supporting lattices for additively manufactured tooling. Addit Manuf 11:16-22 9. Mazumder J, Choi J, Nagarathnam K et al (1997) The direct metal deposition of H13 tool steel for 3-D components. JOM 49:55-60 10. Leary M, Mazur M, Williams H et al (2018) Inconel 625 lattice structures manufactured by selective laser melting (SLM):Mechanical properties, deformation and failure modes. Mater Des 157:179-199 11. Köhnen P, Haase C, Bültmann J et al (2018) Mechanical properties and deformation behavior of additively manufactured lattice structures of stainless steel. Mater Des 145:205-217 12. Yan C, Hao L, Hussein A et al (2012) Evaluations of cellular lattice structures manufactured using selective laser melting. Int J Mach Tools Manuf 62:32-38 13. Yan C, Hao L, Hussein A et al (2014) Advanced lightweight 316L stainless steel cellular lattice structures fabricated via selective laser melting. Mater Des 55:533-541 14. Choy SY, Sun CN, Leong KF et al (2017) Compressive properties of functionally graded lattice structures manufactured by selective laser melting. Mater Des 131:112-120 15. Leary M, Mazur M, Elambasseril J et al (2016) Selective laser melting (SLM) of AlSi12Mg lattice structures. Mater Des 98:344-357 16. Ozdemir Z, Hernandez-Nava E, Tyas A et al (2016) Energy absorption in lattice structures in dynamics:Experiments. Int J Impact Eng 89:49-61 17. Harris JA, Winter RE, McShane GJ (2017) Impact response of additively manufactured metallic hybrid lattice materials. Int J Impact Eng 104:177-191 18. Chen L, Zhang J, Du B et al (2018) Dynamic crushing behavior and energy absorption of graded lattice cylindrical structure under axial impact load. Thin-Walled Struct 127:333-343 19. Li C, Lei H, Liu Y et al (2018) Crushing behavior of multi-layer metal lattice panel fabricated by selective laser melting. Int J Mech Sci 145:389-399 20. Yan C, Hao L, Hussein A et al (2015) Microstructure and mechanical properties of aluminium alloy cellular lattice structures manufactured by direct metal laser sintering. Mater Sci Eng A 628:238-246 21. Qiu C, Yue S, Adkins NJE et al (2015) Influence of processing conditions on strut structure and compressive properties of cellular lattice structures fabricated by selective laser melting. Mater Sci Eng A 628:188-197 22. Yan C, Hao L, Hussein A et al (2014) Evaluation of light-weight AlSi10Mg periodic cellular lattice structures fabricated via direct metal laser sintering. J Mater Process Technol 214:856-864 23. Ferro CG, Varetti S, Maggiore P et al (2018) Design and characterization of trabecular structures for an anti-icing sandwich panel produced by additive manufacturing. J Sandw Struct Mater 22:1111-1131 24. Maskery I, Aboulkhair NT, Aremu AO et al (2016) A mechanical property evaluation of graded density Al-Si10-Mg lattice structures manufactured by selective laser melting. Mater Sci Eng A 670:264-274 25. Maskery I, Aboulkhair NT, Aremu AO et al (2017) Compressive failure modes and energy absorption in additively manufactured double gyroid lattices. Addit Manuf 16:24-29 26. Salmi A, Atzeni E (2017) History of residual stresses during the production phases of AlSi10Mg parts processed by powder bed additive manufacturing technology. Virtual Phys Prototyp 12:153-160 27. Aboulkhair NT, Maskery I, Tuck C et al (2016) The microstructure and mechanical properties of selectively laser melted AlSi10Mg:The effect of a conventional T6-like heat treatment. Mater Sci Eng A 667:139-146 28. Li W, Li S, Liu J et al (2016) Effect of heat treatment on AlSi10Mg alloy fabricated by selective laser melting:Microstructure evolution, mechanical properties and fracture mechanism. Mater Sci Eng A 663:116-125 29. Takata N, Kodaira H, Sekizawa K et al (2017) Change in microstructure of selectively laser melted AlSi10Mg alloy with heat treatments. Mater Sci Eng A 704:218-228 30. Eos O, Speed PA, Eos O et al (2014) Material data sheet EOS aluminium AlSi10Mg material data sheet technical data. Available via EOS. http://www.eos.info/de. Accessed 23 Sept 2020 31. Hathaway BJ, Garde K, Mantell SC et al (2018) Design and characterization of an additive manufactured hydraulic oil cooler. Int J Heat Mass Transf 117:188-200 32. Manfredi D, Calignano F, Krishnan M et al (2013) From powders to dense metal parts:Characterization of a commercial alsimg alloy processed through direct metal laser sintering. Materials 6:856-869 33. Diego M, Flaviana C, Manickavasagam K et al (2016) Additive manufacturing of Al alloys and aluminium matrix composites (AMCs). Intech 1:13 34. Marola S, Manfredi D, Fiore G et al (2018) A comparison of selective laser melting with bulk rapid solidification of AlSi10Mg alloy. J Alloys Compd 742:271-279 35. Trevisan F, Calignano F, Lorusso M et al (2017) On the selective laser melting (SLM) of the AlSi10Mg alloy:process, microstructure, and mechanical properties. Materials 10:76 36. Standard I (2011) ISO 13314 Mechanical testing of metals, ductility testing, compression test for porous and cellular metals. Ref number ISO 13314:1-7 37. Curaà F, Gallinatti AE, Sesana R (2012) Dissipative aspects in thermographic methods. Fatigue Fract Eng Mater Struct 35:1133-1147 38. Ashby M (2011) Materials selection in mechanical design, 4ed, Butterworth-Heinemann, Cambridge 39. Cao Y, Lin X, Wang QZ et al (2021) Microstructure evolution and mechanical properties at high temperature of selective laser melted AlSi10Mg. J Mater Sci Technol 62:162-172 40. Jiang B, Wang Z, Zhao N (2007) Effect of pore size and relative density on the mechanical properties of open cell aluminum foams. Scr Mater 56:169-172 41. Poonaya S, Thinvongpituk C (2007) Comparison of Energy Absorption of Various Section Steel Tubes under Axial Compression and Bending Loading. Mech Eng 590-593 |