[1] Liu B, Yang J, Zhang X et al (2023) Development and application of magnesium alloy parts for automotive OEMs: a review. J Magnes Alloy 11:15-47 [2] Bergero C, Gosnell G, Gielen D et al (2023) Pathways to net-zero emissions from aviation. Nat Sustain 6:404-414 [3] Seetharaman S, Jayalakshmi S, Arvind Singh R et al (2022) The potential of magnesium-based materials for engineering and biomedical applications. J Indian Inst Sci 102:421-437 [4] Goldbach AK, Bauer AM, Wüchner R et al (2020) CAD-integrated parametric lightweight design with isogeometric B-rep analysis. Front Built Environ 6:44. https://doi.org/10.3389/fbuil.2020.00044 [5] Sorgente D, Palumbo G, Piccininni A et al (2018) Investigation on the thickness distribution of highly customized titanium biomedical implants manufactured by superplastic forming. CIRP J Manuf Sci Technol 20:29-35 [6] Padmanabhan KA, Prabu SB, Mulyukov RR et al (2018) Superplastic forming, analyses and industrial applications. In: Superplasticity. Springer, Berlin, pp 359-428. https://doi.org/10.1007/978-3-642-31957-0_9 [7] Sorgente D, Palumbo G, Scintilla LD et al (2016) Superplastic forming of a complex shape automotive component with optimized heated tools. Mater Sci Forum 838/839:494-499 [8] Savaedi Z, Motallebi R, Mirzadeh H et al (2023) Superplasticity of fine-grained magnesium alloys for biomedical applications: a comprehensive review. Curr Opin Solid State Mater Sci 27(2):101058. https://doi.org/10.1016/j.cossms.2023.101058 [9] Nazeer F, Long J, Yang Z et al (2022) Superplastic deformation behavior of Mg alloys: a review. J Magnes Alloy 10:97-109 [10] Neugebauer R, Altan T, Geiger M et al (2006) Sheet metal forming at elevated temperatures. CIRP Ann 55(2):793-816 [11] Carpenter AJ, Antoniswamy AR, Carter JT et al (2014) A mechanism-dependent material model for the effects of grain growth and anisotropy on plastic deformation of magnesium alloy AZ31 sheet at 450 C. Acta Mater 68:254-266 [12] Šašek S, Minárik P, Stráská J et al (2023) Novel ultrafine-grain Mg-Gd/Nd-Y-Ca alloys with an increased ignition temperature. Materials 16(3):1299. https://doi.org/10.3390/ma16031299 [13] Kulekci MK (2008) Magnesium and its alloys applications in automotive industry. Int J Adv Manuf Tech 39:851-865 [14] Kaya AAA, Eren D, Turan D et al (2017) Evolution of microstructure and texture in AZ31 alloy subjected to gas forming. JOM 69:1041-1045 [15] Huang A, Lowe A, Cardew-Hall MJ (2004) Experimental validation of sheet thickness optimisation for superplastic forming of engineering structures. J Mater Process Technol 112(1):136-143 [16] Zhang KF, Wang GF, Wu DZ et al (2004) Research on the controlling of the thickness distribution in superplastic forming. J Mater Process Technol 151(1/3):54-57 [17] Sorgente D, Palumbo G, Scintilla LD et al (2016) Gas forming of an AZ31 magnesium alloy at elevated strain rates. Int J Adv Manuf Tech 83:861-872 [18] Dutta A (2004) Thickness-profiling of initial blank for superplastic forming of uniformly thick domes. Mat Sci Eng A 371(1/2):79-81 [19] Giuliano G, Polini W (2022) Influence of the initial blank geometry on the final thickness distribution of the hemispheres in superplastic AZ31 alloy. Appl Sci 12(4):1912. https://doi.org/10.3390/app12041912 [20] Piccininni A, Sorgente D, Palumbo G (2023) GA-based optimization to control the thickness distribution in components manufactured via superplastic forming. J Manuf Process 86:126-135 [21] Jafar RA, Jarrar FS, Al-Huniti NS (2014) Two-stage approach for improving the thickness distribution in superplastic forming. J Mater Sci Res 4(1):12-27 [22] Yi L, Li X, Li Y et al (2021) Investigation of the two-stage SPF process of aluminum alloy door frames. J Mater Res Technol 15:2873-8282 [23] Palumbo G, Guglielmi P, Piccininni A et al (2020) Manufacturing of a hemispherical component combining incremental forming and superplastic forming. CIRP J Manuf Sci Technol 31:178-188 [24] Geiger M, Merklein M, Vogt U (2009) Aluminum tailored heat treated blanks. Prod Eng Res Devel 3:401. https://doi.org/10.1007/s11740-009-0179-8 [25] Reuther F, Lieber T, Heidrich J et al (2021) Numerical investigations on thermal forming limit testing with local inductive heating for hot forming of AA7075. Materials 14(8):1882. https://doi.org/10.3390/ma14081882 [26] Nishiwaki T, Sako R, Tsutamori H (2021) Hydro-mechanical deep drawing of locally solution-treated aluminum alloy sheets. In: Daehn G, Cao J, Kinsey B et al (eds) Forming the future. The minerals, metals & materials series. Springer, Cham. https://doi.org/10.1007/978-3-030-75381-8_226 [27] Rigas N, Merklein M (2021) Numerical and experimental investigations for distortion-reduced laser heat treatment of aluminum. Prod Eng Res Devel 15:479-488 [28] Geiger M, Merklein M, Kerausch M (2004) Finite element simulation of deep drawing of tailored heat treated blanks. CIRP Ann 53(1):223-226 [29] Rhaipu S, Wise MLH, Bate PS (2002) Microstructural gradients in the superplastic forming of Ti-6Al-4V. Metall Mater Trans A 33:93-100 [30] Lee Y, Kim JJ, Kwon YN et al (2014) Formability and grain size of AZ31 sheet in gas blow forming process. Procedia Eng 81:748-753 [31] Cusick M, Abu-Farha F, Lours P et al (2012) Superplastic forming of AZ31 magnesium alloy with controlled microstructure. Materwiss Werksttech 43(9):810-816 [32] Cao X, Jahazi M, Immarigeon JP (2006) A review of laser welding techniques for magnesium alloys. J Mater Process Technol 171(2):188-204 [33] Scintilla LD, Tricarico L (2013) Experimental investigation on fiber and CO2 inert gas fusion cutting of AZ31 magnesium alloy sheets. Opt Laser Technol 46:42-52 [34] Zheng HY, Guan YC, Wang XC et al (2015) Tailoring material properties induced by laser surface processing. In: Lawrence J, Waugh DG (eds) Laser surface engineering. Woodhead Publishing, pp 317-357. https://doi.org/10.1016/B978-1-78242-074-3.00013-1 [35] Jana S, Olszta M, Edwards D et al (2021) Microstructural basis for improved corrosion resistance of laser surface processed AZ31 Mg alloy. Corros Sci 191:109707. https://doi.org/10.1016/j.corsci.2021.109707 [36] Sorgente D, Palumbo G, Fortunato A et al (2018) Forming behaviour at elevated temperature of a laser heat-treated AZ31 magnesium alloy sheet. Mater Sci Forum 941:1270-1275 [37] Guglielmi P, Sorgente D, Palumbo G (2021) Numerical/experimental investigation of bulge tests on a localized laser heat-treated magnesium alloy AZ31 sheet. In: The 24th international conference on material forming, ESAFORM, Belgique [38] Standard practice for heat treatment of magnesium alloys. https://doi.org/10.1520/B0661-12R20 [39] Standard test methods for determining average grain size. https://doi.org/10.1520/E0112-10 [40] Luca G, Elisabetta C, Claudio G (2013) Fe modeling of the apparent spot technique in circular laser hardening. Int J Adv Manuf Technol 69(9/12):1961-1969. https://doi.org/10.1007/s00170-013-5162-z [41] Sorgente D, Scintilla LD, Palumbo G et al (2010) Blow forming of AZ31 magnesium alloy at elevated temperatures. Int J Mater Form 3:13-19 [42] Lee S, Ham HJ, Kwon SY et al (2013) Thermal conductivity of magnesium alloys in the temperature range from -125℃ to 400℃. Int J Thermophys 34:2343-2350 [43] Miao Q, Hu L, Wang X et al (2010) Grain growth kinetics of a fine-grained AZ31 magnesium alloy produced by hot rolling. J Alloys Compd 493(1/2):87-90 |