1. Murr L, Gaytan SM (2014) Electron beam melting, comprehensive materials processing. Elsevier, Burlington, pp 135-1612. Klöden B (2014) Additive manufacturing—electron beam melting. Available: www.ifam-dd.fraunhofer.de. Accessed 15 May 20143. Facchini L, Magalini E, Robotti P et al (2009) Microstructure and mechanical properties of Ti-6Al-4V produced by electron beam melting of pre-alloyed powders. Rapid Prototyp J 15(3):171-1784. Koike M, Martinez K, Guo L et al (2011) Evaluation of titanium alloy fabricated using electron beam melting system for dental applications. J Mater Process Technol 211(8):1400-14085. Murr LE, Esquivel EV, Quinones SA et al (2009) Microstructures and mechanical properties of electron beam-rapid manufactured Ti-6Al-4V biomedical prototypes compared to wrought Ti-6Al-4V. Mater Charact 60(2):96-1056. Murr LE, Quinones SA, Gaytan SM et al (2009) Microstructure and mechanical behavior of Ti-6Al-4V produced by rapid-layer manufacturing, for biomedical applications. J Mech Behav Biomed Mater 2(1):20-327. Li X, Wang C, Zhang W et al (2009) Fabrication and characterization of porous Ti6Al4V parts for biomedical applications using electron beam melting process. Mater Lett 63(3):403-4058. Harrysson OLA, Cansizoglu O, Marcellin-Little DJ et al (2008) Direct metal fabrication of titanium implants with tailored materials and mechanical properties using electron beam melting technology. Mater Sci Eng 28(3):366-3739. Parthasarathy J, Starly B, Raman S et al (2010) Mechanical evaluation of porous titanium (Ti6Al4V) structures with electron beam melting (EBM). J Mech Behav Biomed Mater 3(3):249-25910. Murr LE, Gaytan SM, Medina F et al (2010) Characterization of Ti-6Al-4V open cellular foams fabricated by additive manufacturing using electron beam melting. Mater Sci Eng 527(7):1861-186811. Parthasarathy J, Starly B, Raman S (2011) A design for the additive manufacture of functionally graded porous structures with tailored mechanical properties for biomedical applications. J Manuf Process 13(2):160-17012. Heinl P, Müller L, Körner C et al (2008) Cellular Ti-6Al-4V structures with interconnected macro porosity for bone implants fabricated by selective electron beam melting. Acta Biomater 4(5):1536-154413. Mohammadhosseini A, Fraser D, Masood SH et al (2013) Compressive properties of Ti-6Al-4V built by electron beam melting. Adv Mater Res 811:108-11214. Mohammadhosseini A, Fraser D, Masood SH et al (2013) Microstructure and mechanical properties of Ti-6Al-4V manufactured by electron beam melting process. Mater Res Innov 17:106-11215. Hosseini AM, Masood SH, Fraser D et al (2012) Mechanical properties investigation of HIP and as-built EBM parts. Adv Mater Res 576:216-21916. Khan AS, Suh YS, Kazmi R (2004) Quasi-static and dynamic loading responses and constitutive modeling of titanium alloys. Int J Plast 20(12):2233-224817. Nemat-Nasser S, Guo WG, Nesterenko VF et al (2001) Dynamic response of conventional and hot isostatically pressed Ti-6Al-4V alloys: experiments and modeling. Mech Mater 33(8):425-43918. Follansbee PS, Gray GT (1989) An analysis of the low temperature, low and high strain-rate deformation of Ti-6Al-4V. Metall Trans A 20(5):863-87419. Biswas N, Ding JL, Balla VK et al (2012) Deformation and fracture behavior of laser processed dense and porous Ti6Al4V alloy under static and dynamic loading. Mater Sci Eng 549:213-22120. Wu XJ, Gorham DA (1997) Stress equilibrium in the split Hopkinson pressure bar test. J de Phys IV 7(C3):C3-91-C3-9621. Gray G (2003) Classic split-Hopkinson pressure bar testing. ASM Handbook, Ohio, pp 462-47622. Johnson GR, Cook WH (1983) A constitutive model and data for metals subjected to large strains, high strain rates, and high temperatures. In: Proceedings of the seventh international symposium on ballistics, The Hague, The Netherlands, pp 541-54723. Field JE, Walley SM, Proud WG et al (2004) Review of experimental techniques for high rate deformation and shock studies. Int J Impact Eng 30(7):725-77524. Edwards M (2006) Properties of metals at high rates of strain. Mater Sci Technol 22(4):453-46225. Davoodi B, Gavrus A, Ragneau E (2005) A technique for measuring the dynamic behaviour of materials at elevated temperatures with a compressive SHPB. WIT Trans Eng Sci 51:15326. Dodd B (1992) Adiabatic shear localization: occurrence, theories, and applications. Pergamon Press, New York27. Zener C, Hollomon J (1944) Effect of strain rate upon plastic flow of steel. J Appl Phys 15(1):22-3228. Peirs J, Tirry W, Amin-Ahmadi B et al (2013) Microstructure of adiabatic shear bands in Ti6Al4V. Mater Charact 75:79-9229. Yin WH, Xu F, Ertorer O et al (2013) Mechanical behavior of microstructure engineered multi-length-scale titanium over a wide range of strain rates. Acta Mater 61(10):3781-379830. Odeshi AG, Al-Ameeri S, Bassim MN (2005) Effect of high strain rate on plastic deformation of a low alloy steel subjected to ballistic impact. J Mater Process Technol 162-163:385-39131. Odeshi AG, Bassim MN, Al-Ameeri S et al (2005) Dynamic shear band propagation and failure in AISI 4340 steel. J Mater Process Technol 169(2):150-15532. Song WQ, Sun S, Zhu S et al (2012) Compressive deformation behavior of a near-beta titanium alloy. Mater Des 34:739-74533. Murr LE, Ramirez AC, Gaytan SM et al (2009) Microstructure evolution associated with adiabatic shear bands and shear band failure in ballistic plug formation in Ti-6Al-4V targets. Mater Sci Eng 516(1):205-21634. Lee G, Lee YH, Lee S et al (2004) Dynamic deformation behavior and ballistic impact properties of Ti-6Al-4V alloy having equiaxed and bimodal microstructures. Metall Mater Trans A 35(10):3103-311235. Guden M, Celik E, Akar E et al (2005) Compression testing of a sintered Ti6Al4V powder compact for biomedical applications. Mater Charact 54(4):399-40836. Tu Z, Lu Y (2009) Evaluation of typical concrete material models used in hydrocodes for high dynamic response simulations. Int J Impact Eng 36(1):132-14637. Zhou X, Hao H, Kuznetsov VA et al (2006) Numerical calculation of concrete slab response to blast loading. Trans Tianjin Univ 12(Suppl):94-9938. Shui-Sheng YU, Yu-Bin LU, Yong CAI (2013) The strain-rate effect of engineering materials and its unified model. Latin Am J Solids Struct 10(4):833-84439. Almasri AH, Voyiadjis GZ (2007) Effect of strain rate on the dynamic hardness in metals. J Eng Mater Technol 129(4): 505-512 |