Advances in Manufacturing ›› 2015, Vol. 3 ›› Issue (3): 232-243.doi: 10.1007/s40436-015-0119-0
• Articles • Previous Articles Next Articles
A. Mohammadhosseini1, S. H. Masood1, D. Fraser2, M. Jahedi2
Received:2014-06-16
Revised:2015-08-14
Online:2015-09-25
Published:2015-09-11
Contact:
S. H. Masood
E-mail:smasood@swin.edu.au
A. Mohammadhosseini, S. H. Masood, D. Fraser, M. Jahedi. Dynamic compressive behaviour of Ti-6Al-4V alloy processed by electron beam melting under high strain rate loading[J]. Advances in Manufacturing, 2015, 3(3): 232-243.
| 1. Murr L, Gaytan SM (2014) Electron beam melting, comprehensive materials processing. Elsevier, Burlington, pp 135-1612. Klöden B (2014) Additive manufacturing—electron beam melting. Available: www.ifam-dd.fraunhofer.de. Accessed 15 May 20143. Facchini L, Magalini E, Robotti P et al (2009) Microstructure and mechanical properties of Ti-6Al-4V produced by electron beam melting of pre-alloyed powders. Rapid Prototyp J 15(3):171-1784. Koike M, Martinez K, Guo L et al (2011) Evaluation of titanium alloy fabricated using electron beam melting system for dental applications. J Mater Process Technol 211(8):1400-14085. Murr LE, Esquivel EV, Quinones SA et al (2009) Microstructures and mechanical properties of electron beam-rapid manufactured Ti-6Al-4V biomedical prototypes compared to wrought Ti-6Al-4V. Mater Charact 60(2):96-1056. Murr LE, Quinones SA, Gaytan SM et al (2009) Microstructure and mechanical behavior of Ti-6Al-4V produced by rapid-layer manufacturing, for biomedical applications. J Mech Behav Biomed Mater 2(1):20-327. Li X, Wang C, Zhang W et al (2009) Fabrication and characterization of porous Ti6Al4V parts for biomedical applications using electron beam melting process. Mater Lett 63(3):403-4058. Harrysson OLA, Cansizoglu O, Marcellin-Little DJ et al (2008) Direct metal fabrication of titanium implants with tailored materials and mechanical properties using electron beam melting technology. Mater Sci Eng 28(3):366-3739. Parthasarathy J, Starly B, Raman S et al (2010) Mechanical evaluation of porous titanium (Ti6Al4V) structures with electron beam melting (EBM). J Mech Behav Biomed Mater 3(3):249-25910. Murr LE, Gaytan SM, Medina F et al (2010) Characterization of Ti-6Al-4V open cellular foams fabricated by additive manufacturing using electron beam melting. Mater Sci Eng 527(7):1861-186811. Parthasarathy J, Starly B, Raman S (2011) A design for the additive manufacture of functionally graded porous structures with tailored mechanical properties for biomedical applications. J Manuf Process 13(2):160-17012. Heinl P, Müller L, Körner C et al (2008) Cellular Ti-6Al-4V structures with interconnected macro porosity for bone implants fabricated by selective electron beam melting. Acta Biomater 4(5):1536-154413. Mohammadhosseini A, Fraser D, Masood SH et al (2013) Compressive properties of Ti-6Al-4V built by electron beam melting. Adv Mater Res 811:108-11214. Mohammadhosseini A, Fraser D, Masood SH et al (2013) Microstructure and mechanical properties of Ti-6Al-4V manufactured by electron beam melting process. Mater Res Innov 17:106-11215. Hosseini AM, Masood SH, Fraser D et al (2012) Mechanical properties investigation of HIP and as-built EBM parts. Adv Mater Res 576:216-21916. Khan AS, Suh YS, Kazmi R (2004) Quasi-static and dynamic loading responses and constitutive modeling of titanium alloys. Int J Plast 20(12):2233-224817. Nemat-Nasser S, Guo WG, Nesterenko VF et al (2001) Dynamic response of conventional and hot isostatically pressed Ti-6Al-4V alloys: experiments and modeling. Mech Mater 33(8):425-43918. Follansbee PS, Gray GT (1989) An analysis of the low temperature, low and high strain-rate deformation of Ti-6Al-4V. Metall Trans A 20(5):863-87419. Biswas N, Ding JL, Balla VK et al (2012) Deformation and fracture behavior of laser processed dense and porous Ti6Al4V alloy under static and dynamic loading. Mater Sci Eng 549:213-22120. Wu XJ, Gorham DA (1997) Stress equilibrium in the split Hopkinson pressure bar test. J de Phys IV 7(C3):C3-91-C3-9621. Gray G (2003) Classic split-Hopkinson pressure bar testing. ASM Handbook, Ohio, pp 462-47622. Johnson GR, Cook WH (1983) A constitutive model and data for metals subjected to large strains, high strain rates, and high temperatures. In: Proceedings of the seventh international symposium on ballistics, The Hague, The Netherlands, pp 541-54723. Field JE, Walley SM, Proud WG et al (2004) Review of experimental techniques for high rate deformation and shock studies. Int J Impact Eng 30(7):725-77524. Edwards M (2006) Properties of metals at high rates of strain. Mater Sci Technol 22(4):453-46225. Davoodi B, Gavrus A, Ragneau E (2005) A technique for measuring the dynamic behaviour of materials at elevated temperatures with a compressive SHPB. WIT Trans Eng Sci 51:15326. Dodd B (1992) Adiabatic shear localization: occurrence, theories, and applications. Pergamon Press, New York27. Zener C, Hollomon J (1944) Effect of strain rate upon plastic flow of steel. J Appl Phys 15(1):22-3228. Peirs J, Tirry W, Amin-Ahmadi B et al (2013) Microstructure of adiabatic shear bands in Ti6Al4V. Mater Charact 75:79-9229. Yin WH, Xu F, Ertorer O et al (2013) Mechanical behavior of microstructure engineered multi-length-scale titanium over a wide range of strain rates. Acta Mater 61(10):3781-379830. Odeshi AG, Al-Ameeri S, Bassim MN (2005) Effect of high strain rate on plastic deformation of a low alloy steel subjected to ballistic impact. J Mater Process Technol 162-163:385-39131. Odeshi AG, Bassim MN, Al-Ameeri S et al (2005) Dynamic shear band propagation and failure in AISI 4340 steel. J Mater Process Technol 169(2):150-15532. Song WQ, Sun S, Zhu S et al (2012) Compressive deformation behavior of a near-beta titanium alloy. Mater Des 34:739-74533. Murr LE, Ramirez AC, Gaytan SM et al (2009) Microstructure evolution associated with adiabatic shear bands and shear band failure in ballistic plug formation in Ti-6Al-4V targets. Mater Sci Eng 516(1):205-21634. Lee G, Lee YH, Lee S et al (2004) Dynamic deformation behavior and ballistic impact properties of Ti-6Al-4V alloy having equiaxed and bimodal microstructures. Metall Mater Trans A 35(10):3103-311235. Guden M, Celik E, Akar E et al (2005) Compression testing of a sintered Ti6Al4V powder compact for biomedical applications. Mater Charact 54(4):399-40836. Tu Z, Lu Y (2009) Evaluation of typical concrete material models used in hydrocodes for high dynamic response simulations. Int J Impact Eng 36(1):132-14637. Zhou X, Hao H, Kuznetsov VA et al (2006) Numerical calculation of concrete slab response to blast loading. Trans Tianjin Univ 12(Suppl):94-9938. Shui-Sheng YU, Yu-Bin LU, Yong CAI (2013) The strain-rate effect of engineering materials and its unified model. Latin Am J Solids Struct 10(4):833-84439. Almasri AH, Voyiadjis GZ (2007) Effect of strain rate on the dynamic hardness in metals. J Eng Mater Technol 129(4): 505-512 |
| [1] | Kai-Xiong Hu, Kai Guo, Wei-Dong Li, Yang-Hui Wang. Temperature evolution prediction for laser directed energy deposition enabled by finite element modelling and bi-directional gated recurrent unit [J]. Advances in Manufacturing, 2025, 13(3): 668-687. |
| [2] | Javid Sharifi, Vlad Paserin, Haniyeh (Ramona) Fayazfar. Sustainable direct metallization of 3D-printed metal-infused polymer parts: a novel green approach to direct copper electroless plating [J]. Advances in Manufacturing, 2024, 12(4): 784-797. |
| [3] | John O'Hara, Feng-Zhou Fang. Design and fabrication of an aluminium oxide cutting insert with an internal cooling channel [J]. Advances in Manufacturing, 2024, 12(4): 619-641. |
| [4] | Bao-Ri Zhang, Yong-Hua Shi. A novel weld-pool-length monitoring method based on pixel analysis in plasma arc additive manufacturing [J]. Advances in Manufacturing, 2024, 12(2): 335-348. |
| [5] | Sen-Lin Wang, Li-Chao Zhang, Chao Cai, Ming-Kai Tang, Si Chen, Jiang Huang, Yu-Sheng Shi. Universal and efficient hybrid modeling and direct slicing method for additive manufacturing processes [J]. Advances in Manufacturing, 2024, 12(2): 300-316. |
| [6] | Jing-Hua Xu, Lin-Xuan Wang, Shu-You Zhang, Jian-Rong Tan. Predictive defect detection for prototype additive manufacturing based on multi-layer susceptibility discrimination [J]. Advances in Manufacturing, 2023, 11(3): 407-427. |
| [7] | Francesco Baffa, Giuseppe Venturini, Gianni Campatelli, Emanuele Galvanetto. Effect of stepover and torch tilting angle on a repair process using WAAM [J]. Advances in Manufacturing, 2022, 10(4): 541-555. |
| [8] | Prveen Bidare, Amaia Jiménez, Hany Hassanin, Khamis Essa. Porosity, cracks, and mechanical properties of additively manufactured tooling alloys: a review [J]. Advances in Manufacturing, 2022, 10(2): 175-204. |
| [9] | Omar Ahmed Mohamed, Syed Hasan Masood, Wei Xu. Nickel-titanium shape memory alloys made by selective laser melting:a review on process optimisation [J]. Advances in Manufacturing, 2022, 10(1): 24-58. |
| [10] | Athul Joseph, Vinyas Mahesh, Dineshkumar Harursampath. On the application of additive manufacturing methods for auxetic structures: a review [J]. Advances in Manufacturing, 2021, 9(3): 342-368. |
| [11] | Wei-Jun Zhu, Guo-Qiang Tian, Yang Lu, Kai Miao, Di-Chen Li. Leaching improvement of ceramic cores for hollow turbine blades based on additive manufacturing [J]. Advances in Manufacturing, 2019, 7(4): 353-363. |
| [12] | Saroj Kumar Padhi, S. S. Mahapatra, Rosalin Padhi, Harish Chandra Das. Performance analysis of a thick copper-electroplated FDM ABS plastic rapid tool EDM electrode [J]. Advances in Manufacturing, 2018, 6(4): 442-456. |
| [13] | Jyotirmoy Nandy, Hrushikesh Sarangi, Seshadev Sahoo. Microstructure evolution of Al-Si-10Mg in direct metal laser sintering using phase-field modeling [J]. Advances in Manufacturing, 2018, 6(1): 107-117. |
| [14] | Yu Dong, Jamie Milentis, Alokesh Pramanik. Additive manufacturing of mechanical testing samples based on virgin poly (lactic acid) (PLA) and PLA/wood fibre composites [J]. Advances in Manufacturing, 2018, 6(1): 71-82. |
| [15] | D. Biermann, H. Abrahams, M. Metzger. Experimental investigation of tool wear and chip formation in cryogenic machining of titanium alloys [J]. Advances in Manufacturing, 2015, 3(4): 292-299. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
Tel: 86-21-66135510
Fax: 86-21-66132736
E-mail: aim@oa.shu.edu.cn