1. Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6(3):183-191
2. Wu J, Pisula W, Müllen K (2007) Graphenes as potential material for electronics. Chem Rev 107(3):718-747
3. Mochalin VN, Shenderova O, Ho D et al (2012) The properties and applications of nanodiamonds. Nat Nano 7(1):11-23
4. Li H, Kang Z, Liu Y et al (2012) Carbon nanodots: synthesis, properties and applications. J Mater Chem 22(46):24230-24253
5. Hirsch A (2010) The era of carbon allotropes. Nat Mater 9:868- 871
6. Hou J, Shao Y, Ellis MW et al (2011) Graphene-based electrochemical energy conversion and storage: fuel cells, supercapacitors and lithium ion batteries. Phys Chem Chem Phys 13(34): 15384-15402
7. Börrnert F, Börrnert C, Gorantla S et al (2010) Single-wall-carbon-nanotube/single-carbon-chain molecular junctions. Phys Rev B 81(8):085439
8. Eisler S, Slepkov AD, Elliott E et al (2005) Polyynes as a model for carbyne: synthesis, physical properties, and nonlinear optical response. J Am Chem Soc 127(8):2666-2676
9. Novoselov KS, Geim AK, Morozov SV et al (2004) Electric field effect in atomically thin carbon films. Science 306(5696):666- 669
10. Mayani VJ, Mayani SV, Wook KS (2012) Development of nanocarbon gold composite for heterogeneous catalytic oxidation. Mater Lett 87:90-93
11. Liang Y, Li Y, Wang H et al (2013) Strongly coupled inorganic/nanocarbon hybrid materials for advanced electrocatalysis. J Am Chem Soc 135(6):2013-2036
12. Zhao H, Chang Y, Liu M et al (2013) A universal immunosensing strategy based on regulation of the interaction between graphene and graphene quantum dots. Chem Commun 49(3):234-236
13. Xin S, Guo YG, Wan LJ (2012) Nanocarbon networks for advanced rechargeable lithium batteries. Acc Chem Res 45(10): 1759-1769
14. Dai L, Xue Y, Qu L et al (2015) Metal-free catalysts for oxygen reduction reaction. Chem Rev 115(11):4823-4892
15. Zhang X, Liu Z (2012) Recent advances in microwave initiated synthesis of nanocarbon materials. Nanoscale 4(3):707-714
16. Jin YZ, Gao C, Hsu WK et al (2005) Large-scale synthesis and characterization of carbon spheres prepared by direct pyrolysis of hydrocarbons. Carbon 43(9):1944-1953
17. Shaikjee A, Coville NJ (2012) The role of the hydrocarbon source on the growth of carbon materials. Carbon 50(10):3376-3398
18. Niu T, Zhou M, Zhang J et al (2013) Growth intermediates for CVD graphene on Cu(111): carbon clusters and defective graphene. J Am Chem Soc 135(22):8409-8414
19. Boukhvalov DW, Feng X, Müllen K (2011) First-principles modeling of the polycyclic aromatic hydrocarbons reduction. J Phys Chem C 115(32):16001-16005
20. Kosimov DP, Dzhurakhalov AA, Peeters FM (2010) Carbon clusters: from ring structures to nanographene. Phys Rev B 81(19): 195414
21. Liu H, Yan L, Yue B et al (2014) Hydrogen transfer reaction in polycyclic aromatic hydrocarbon radicals. J Phys Chem A 118(25):4405-4414
22. Xie L, Yan L, Sun C et al (2012) Force field model and molecular dynamics simulation of polyynes. Comput Theor Chem 997:14-18
23. Qi J, Zhu H (2014) Theoretical study on the structures and properties of hydrogen-doped cationic carbon clusters CnH2+ (n= 3-10). Chem Phys 431-432:20-25
24. Wohner N, Lam PK, Sattler K (2015) Systematic energetics study of graphene nanoflakes: from armchair and zigzag to rough edges with pronounced protrusions and overcrowded bays. Carbon 82:523-537
25. Hu W, Lin L, Yang C et al (2014) Electronic structure and aromaticity of large-scale hexagonal graphene nanoflakes. J Chem Phys 141(21):214704
26. Frisch MJ, Trucks GW, Schlegel HB et al (2009) GAUSSIAN 09, Revision D.02. Gaussian Inc., Wallingford
27. Grimme S, Antony J, Ehrlich S et al (2010) A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J Chem Phys 132(15):154104
28. Frisch MJ, Pople JA, Binkley JS (1984) Self-consistent molecular orbital methods 25. Supplementary functions for Gaussian basis sets. J Chem Phys 80(7):3265-3269
29. Zhao Y, Truhlar DG (2008) The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor Chem Acc 120(1-3):215-241
30. Feng C, Lin CS, Fan W et al (2009) Stacking of polycyclic aromatic hydrocarbons as prototype for graphene multilayers, studied using density functional theory augmented with a dispersion term. J Chem Phys 131(19):194702
31. McMurry J (1992) Organic chemistry. 3rd edn. Pacific Grove, California, p 29
32. Blanksby SJ, Ellison GB (2003) Bond dissociation energies of organic molecules. Acc Chem Res 36(4):255-263
33. Davico GE, Bierbaum VM, DePuy CH et al (1995) The C-H bond energy of benzene. J Am Chem Soc 117(9):2590-2599
34. Barckholtz C, Barckholtz TA, Hadad CM (1999) C-H and N-H bond dissociation energies of small aromatic hydrocarbons. J Am Chem Soc 121(3):491-500 |