1. Wolf JS, Sandrock GD (1968) Some observations concerning the oxidation of the cobalt-base superalloy L-605 (HS-25). NASA TN D-4715, 1-37, Id. 20020916024 2. Hebsur MG, Noebe RD, Revilock DM (2003) Superior ballistic impact resistance achieved by the co-base alloy Haynes 25 (L605). Research and Technology, NASA/TM-211990 3. Tosun N, Cogun C (2003) An investigation on wire wears in WEDM. J Mater Process Technol 134(3):273-278 4. Puri AB, Bhattacharyya B (2003) An analysis and optimization of the geometrical inaccuracy due to wire lag phenomenon in WEDM. Int J Mach Tools Manuf 43(2):151-159 5. Sarkar S, Mitra S, Bhattacharyya B (2006) Parametric optimization of wire electrical discharge machining of c titanium aluminide alloy through an artificial neural network model. Int J Adv Manuf Technol 27(5-6):501-508 6. Ramakrishnan R, Karunamoorthy L (2006) Multi response optimization of wire EDM operations using robust design of experiments. Int J Adv Manuf Technol 29(1-2):105-112 7. Mahapatra SS, Patnaik A (2007) Optimization of wire electrical discharge machining (WEDM) process parameters using Taguchi method. Int J Adv Manuf Technol 34(9-10):911-925 8. Gauri SK, Chakraborty S (2009) Optimisation of multiple responses for WEDM processes using weighted principal components. Int J Adv Manuf Technol 40(11-12):1102-1110 9. Kumar S, Singh R (2010) Investigating surface properties of OHNS die steel after electrical discharge machining with manganese powder mixed in the dielectric. Int J Adv Manuf Technol 50(5-8):625-633 10. Kumar K, Agarwal S (2012) Multi-objective parametric optimization on machining with wire electric discharge machining. Int J Adv Manuf Technol 62(5-8):617-633 11. Azhiri RB, Teimouri R, Baboly MG et al (2014) Application of Taguchi, ANFIS and grey relational analysis for studying, modeling and optimization of wire EDM process while using gaseous media. Int J Adv Manuf Technol 71(1-4):279-295 12. Rao TB, Krishna AG (2013) Simultaneous optimization of multiple performance characteristics in WEDM for machining ZC63/SiCp MMC. Adv Manuf 1(3):265-275 13. Kosaraju S, Anne VG (2013) Optimal machining conditions for turning Ti-6Al-4V using response surface methodology. Adv Manuf 1(4):329-339 14. Das AK, Saha P (2013) Machining of circular micro holes by electrochemical micro-machining process. Adv Manuf 1(4):314-319 15. Khan ZA, Siddiquee AN, Khan NZ et al (2014) Multi response optimization of wire electrical discharge machining process parameters using Taguchi based grey relational analysis. Procedia Mater Sci 6:1683-1695 16. Prasad DVSSSV, Krishna AG (2015) Empirical modeling and optimization of kerf and wire wear ratio in wire electrical discharge machining. Int J Adv Manuf Technol 77(1-4):427-441 17. Tripathy S, Tripathy DK (2016) Multi-attribute optimization of machining process parameters in powder mixed electro-discharge machining using TOPSIS and grey relational analysis. Int J Eng Sci Technol 19(1):62-70 18. Nain SS, Garg D, Kumar S (2017) Modeling and optimization of process variables of wire-cut electric discharge machining of super alloy Udimet-L605. Eng Sci Technol Int J 20:247-264 19. Liu H, Wang X, Tan D et al (2006) Study on traffic information fusion algorithm based on support vector machines. In:Proceeding of the sixth international conference on intelligent systems design and applications, IEEE, vol 6, pp 183-187 20. Pal M, Singh NK, Tiwari NK (2010) Support vector regression based modelling of pier scour using field data. Eng Appl Artif Intell 24(5):911-916 21. Lu WC, Ji XB, Li MJ et al (2013) Using support vector machine for materials design. Adv Manuf 1(2):151-159 22. Laha D, Ren Y, Suganthan PN (2015) Modeling of steel making process with effective machine learning techniques. Expert Syst Appl 42:4687-4696 23. Zhang L, Jia Z, Wang F et al (2010) A hybrid model using supporting vector machine and multi-objective genetic algorithm for processing parameters optimization in micro-EDM. Int J Adv Manuf Technol 51:575-586 24. Vapnik VN (1998) Statistical learning theory. Wiley, New York 25. Vapnik VN (1995) The nature of statistical learning theory. Springer, New York 26. Smola AJ (1996) Regression estimation with support vector learning machines. Dissertation, Technical University of Munich 27. Cortes C, Vapnik VN (1995) Support vector networks. Mach Learn 20(3):273-297 28. Luenberger DG (1984) Linear and nonlinear programming. Addison-Wesley, New Jersey 29. Witten IH, Frank E (2005) Data mining:practical machine learning tools and techniques. Morgan Kaufmann, San Francisco, p2 30. Roy RK (1990) A primer on Taguchi method. Van Nostrand Reinhold, New York 31. Ross PJ (1996) Taguchi techniques for quality engineering. McGraw Hill, New York 32. Deng J (1989) Introduction to grey system. J Grey Syst 1:1-24 33. Deng J (1982) Control problems of grey systems. Syst Control Lett 5:288-294 |