1. Velay V, Bernhart G, Penazzi L (2006) Cyclic behavior modeling of a tempered martensitic hot work tool steel. Int J Plasticity 22(3):459-496 2. Zhang Z, Delagnes D, Bernhart G (2007) Ageing effect on cyclic plasticity of a tempered martensitic steel. Int J Fatigue 29(2):336-346 3. Zhu J, Zhang ZH, Xie JX (2019) Improving strength and ductility of H13 die steel by pre-tempering treatment and its mechanism. Mater Sci Eng A 752(3):101-114 4. Li JY, Chen YL, Huo JH (2015) Mechanism of improvement on strength and toughness of H13 die steel by nitrogen. Mater Sci Eng A 640:16-23 5. Li JY, Zhao P, Yanagimoto J et al (2012) Effects of heat treatment on the microstructures and mechanical properties of a new type of nitrogen-containing die steel. Int J Miner Metall Mater 19(6):511-517 6. Pérez M, Rodríguez C, Belzunce FJ (2014) The use of cryogenic thermal treatments to increase the fracture toughness of a hot work tool steel used to make forging dies. Proc Mater Sci 3:604-609 7. Yan ZJ, Liu K, Eckert J (2020) Effect of tempering and deep cryogenic treatment on microstructure and mechanical properties of Cr-Mo-V-Ni steel. Mater Sci Eng A 787:139520. https://doi. org/10.1016/j.msea.2020.139520 8. Weng ZJ, Gu KX, Wang KK et al (2020) The reinforcement role of deep cryogenic treatment on the strength and toughness of alloy structural steel. Mater Sci Eng A. 772:138698. https://doi. org/10.1016/j.msea.2019.138698 9. Peng F, Xu YB, Han DT et al (2019) In influence of pre-tempering treatment on microstructure and mechanical properties in quenching and partitioning steels with ferrite-martensite start structure. Mater Sci Eng A 756:248-257 10. Luo H, Shi J, Wang C et al (2011) Experimental and numerical analysis on formation of stable austenite during the intercritical annealing of 5 Mn steel. Acta Mater 59(10):4002-4014 11. Ả sberg M, Fredriksson G, Hatami S et al (2019) In influence of post treatment on microstructure, porosity and mechanical properties of additive manufactured H13 tool steel. Mater Sci Eng A 742:584-589 12. Ali M, Porter D, Kömi J et al (2019) The effect of double austenitization and quenching on the microstructure and mechanical properties of CrNiMoWMnV ultrahigh-strength steels after low-temperature tempering. Mater Sci Eng A 763:138169. https://doi.org/10.1016/j.msea.2019.138169 13. Chen K, Jiang ZH, Liu FB et al (2020) Enhanced mechanical properties by retained austenite in medium-carbon Si-rich microalloyed steel treated by quenching-tempering, austempering and austempering-tempering processes. Mater Sci Eng A 790:139742. https://doi.org/10.1016/j.msea.2020.139742 14. Zhou QC, Wu XC, Shi NN et al (2011) Microstructure evolution and kinetic analysis of DM hot-work die steels during tempering. Mater Sci Eng A 528(8):5696-5700 15. Zhang YP, Zhan DP, Qi XW et al (2017) Microstructure and mechanical properties of Cr14 ultra-high-strength steel at different tempering temperatures around 773 K. Mater Sci Eng A 698:152-161 16. Liu HH, Fu PX, Liu HW et al (2018) Microstructure evolution and mechanical properties in 718H pre-hardened mold steel during tempering. Mater Sci Eng A 709:181-192 17. Saha DC, Biro E, Gerlich AP et al (2016) Effects of tempering mode on the structural changes of martensite. Mater Sci Eng A 673:467-475 18. Jebaraj M, Kumar MP, Anburaj R (2020) Effect of LN2 and CO2 coolants in milling of 55NiCrMoV7 steel. J Manuf Process 53:318-327 19. Zhang ZP, Qi YH, Delagnes D et al (2007) Microstructure variation and hardness diminution during low cycle fatigue of 55NiCrMoV7 steel. J Iron Steel Research Int 14:68-73 20. Egner H, Egner W (2014) Modeling of a tempered martensitic hot work tool steel behavior in the presence of thermo-viscoelastic coupling. Int J Plast 57:77-91 21. Sun C, Fu PX, Ma XP et al (2020) Effect of matrix carbon content and lath martensite microstructures on the tempered precipitates and impact toughness of a medium-carbon low-alloy steel. J Mater Res Technol 9(4):7701-7710 22. Wu C, Meng QL (2019) Microstructural evolution of a steamturbine rotor subjected to a water-quenching process:numerical simulation and experimental verification. Adv Manuf 7:84-104 23. Morsdorf L, Tasan CC, Ponge D et al (2015) 3D structural and atomic-scale analysis of lath martensite:Effect of the transformation sequence. Acta Mater 95:366-377 24. He BB, Huang MX (2015) Revealing the intrinsic nanohardness of lath martensite in low carbon steel. Metall Mater Trans A 46:688-694 25. Maalekian M, Kozeschenik E, Chatterjee S et al (2007) Mechanical stabilisation of eutectoid steel. Mater Sci Technol 23:610-612 26. Tao XG, Han LZ, Gu JF (2014) Effect of tempering on microstructure evolution and mechanical properties of X12CrMoWVNbN10-1-1 steel. Mater Sci Eng A 618:189-204 27. Hoseiny H, Klement U, Sotskovszki P et al (2011) Comparison of the microstructures in continuous-cooled and quench-tempered pre-hardened mould steels. Mater Des 32:21-28 28. Garrison WM, Wojcieszynski AL (2007) A discussion of the effect of inclusion volume fraction on the toughness of steel. Mater Sci Eng A 464:321-329 29. Chen K, Jiang ZH, Liu FB et al (2019) Effect of quenching and tempering temperature on microstructure and tensile properties of micro-alloyed ultra-high strength suspension spring steel. Mater Sci Eng A 766:138272. https://doi.org/10.1016/j.msea.2019.138272 30. Lütjering G, Williams JC (2007) Titanium, (2nd edn). Springer, Berlin 31. Kim B, Boucard E, Sourmail T et al (2014) The influence of silicon in tempered martensite:understanding the microstructure properties relationship in 0.5-0.6 wt.% C steels. Acta Mater 68:169-178 |