1. Buffa G, De LM, Sciortino E et al (2016) Dissimilar titanium/aluminum friction stir welding lap joints by experiments and numerical simulation. Adv Manuf 4:287–295 2. Sahu PK, Kumari K, Pa S et al (2016) Hybrid fuzzy-grey-Taguchi based multi weld quality optimization of Al/Cu dissimilar friction stir welded joints. Adv Manuf 4:237–247 3. Pandey C, Thakare JG, Taraphdar PK et al (2021) Characterization of the soft zone in dissimilar welds joint of 2.25Cr-1Mo and lean duplex LDX2101 steel. Fusion Eng Des 163:112147. https://doi.org/10.1016/j.fusengdes.2020.112147 4. Lalvani H, Mandal P, Yaghi A et al (2022) A solid-state joining approach to manufacture of transition joints for high integrity applications. J Manuf Process 73:90–111 5. Maurya AK, Pandey C, Chhibber R (2021) Dissimilar welding of duplex stainless steel with Ni alloys: a review. Int J Pres Ves Pip 192:104439. https://doi.org/10.1016/j.ijpvp.2021.104439 6. Wu G, Meng QL (2019) Microstructural evolution of a steam-turbine rotor subjected to a water-quenching process: numerical simulation and experimental verification. Adv Manuf 7:84–104 7. Dak G, Pandey C (2020) A critical review on dissimilar welds joint between martensitic and austenitic steel for power plant application. J Manuf Process 58:377–406 8. Lee WS, Kao HC (2014) High temperature deformation behaviour of Haynes 188 alloy subjected to high strain rate loading. Mater Sci Eng A 594:292–301 9. Han J, Yoo B, Im HJ et al (2019) Microstructural evolution of the heat affected zone of a Co-Ti-W alloy upon laser cladding with a CoNiCrAlY coating. Mater Charact 158:109998 10. Moradi M, Ghorbani D, Moghadam MK et al (2019) Nd: YAG laser hardening of AISI 410 stainless steel: Microstructural evaluation, mechanical properties, and corrosion behavior. J Alloys Compd 795:213–222 11. Tsai MC, Chiou CS, Du JS et al (2002) Phase transformation in AISI 410 stainless steel. Mater Sci Eng A 332:1–10 12. Cottrell CLM (1985) Electron beam welding-a critical review. Mater Des 6:285–291 13. Kar J, Roy SK, Roy GG (2016) Effect of beam oscillation on electron beam welding of copper with AISI-304 stainless steel. J Mater Process Technol 233:174–185 14. Lacki P, Adamus K (2011) Numerical simulation of the electron beam welding process. Comput Struct 89:977–985 15. Qi YL, Ju D, Quan H et al (2000) Electron beam welding, laser beam welding and gas tungsten arc welding of titanium sheet. Mater Sci Eng A 280:177–181 16. Ding K, Zhao BG, Huo X et al (2020) Role of the V-notch location in the impact toughness of 9 pct Cr-CrMoV dissimilar welded joints. Metall Mater Trans A 51:1699–1706 17. Ramkumar KD, Oza S, Periwal S et al (2015) Characterization of weld strength and toughness in the multi-pass welding of Inconel 625 and Super-duplex stainless steel UNS S32750. Ciência & Tecnologia dos Materiais 27:41–52 18. Kumar S, Yadav VK, Sharma SK et al (2021) Role of dissimilar Ni-based ERNiCrMo-3 filler on the microstructure, mechanical properties and weld induced residual stresses of the ferritic/martensitic P91 steel welds joint. Int J Pres Ves Pip 193:104443. https://doi.org/10.1016/j.ijpvp.2021.104443 19. Dak G, Pandey C (2021) Experimental investigation on microstructure, mechanical properties, and residual stresses of dissimilar welded joint of martensitic P92 and AISI 304L austenitic stainless steel. Int J Pres Ves Pip 194:104536. https://doi.org/10.1016/j.ijpvp.2021.104536 20. Sauraw A, Sharma AK, Fydrych D et al (2021) Study on microstructural characterization, mechanical properties and residual stress of GTAW dissimilar joints of P91 and P22 steels. Materials 14:6591. https://doi.org/10.3390/ma14216591 21. Bhanu V, Fydrych D, Gupta A et al (2021) Study on microstructure and mechanical properties of laser welded dissimilar joint of P91 steel and Incoloy 800HT nickel alloy. Materials 14:5876 22. Omar AA (1998) Effects of welding parameters on hard zone formation at dissimilar metal welds. Weld J 77:86–93 23. Kou S, Yang YK (2007) Fusion-boundary macrosegregation in dissimilar-filler welds. Weld J 86:303–312 24. Soysal T, Kou S, Tat D et al (2016) Macrosegregation in dissimilar-metal fusion welding. Acta Mater 110:149–160 25. Wang HT, Wang GZ, Xuan FZ et al (2013) Local mechanical properties of a dissimilar metal welded joint in nuclear powersystems. Mater Sci Eng A 568:108–117 26. Tasalloti H, Kah P, Martikainen J (2017) Effect of heat input on dissimilar welds of ultra high strength steel and duplex stainless steel: Microstructural and compositional analysis. Mater Charact 123:29–41 27. Ding K, Ji HJ, Liu X et al (2018) Prevention of carbon migration in 9% Cr/CrMoV dissimilar welded joint by adding tungsten inert gas overlaying layer. J Iron Steel Res Int 25:847–853 28. Kumar S, Shahi AS (2016) Studies on metallurgical and impact toughness behavior of variably sensitized weld metal and heat affected zone of AISI 304L welds. Mater Des 89:399–412 29. Ding K, Wang P, Liu X et al (2018) Formation of lamellar carbides in Alloy 617-HAZ and their role in the impact toughness of Alloy 617/9%Cr dissimilar welded joint. J Mater Eng Perform 27:6027–6039 30. Liu W, Liu X, Lu FG et al (2015) Creep behavior and microstructure evaluation of welded joint in dissimilar modified 9Cr-1Mo steels. Mater Sci Eng A 644:337–346 31. Ding K, Qiao SF, Liu SP et al (2019) Failure transition mechanism of stress rupture performance of the Inconel 625/9 pct Cr steel dissimilar welded joint. Metall Mater Trans A 50:4652–4664 32. Chen Z, Lu Y, Ding X et al (2016) Microstructural and hardness investigations on a dissimilar metal weld between low alloy steel and Alloy 82 weld metal. Mater Charact 121:166–174 33. Chen ZR, Lu YH (2015) TEM observation of martensite layer at the weld interface of an A508III to Inconel 82 dissimilar metal weld joint. Metall Mater Trans A 46:5494–5498 34. Dupont J, Kusko C (2007) Martensite formation in austenitic/ferritic dissimilar alloy welds. Weld J 86:51–54 35. Zhang Y, Ding K, Wu G et al (2020) Aging-induced formation of the nano-sized clustered carbides in the weld metal of Co-based alloy/AISI 410 stainless steel dissimilar welded joint. Metall Res Technol 117:402. https://doi.org/10.1051/metal/2020033 36. Liu M, Zhang XW, Yang KX et al (2019) Comparison and sensitivity analysis of the efficiency enhancements of coal-fired power plants integrated with supercritical CO2 Brayton cycle and steam Rankine cycle. Energy Convers Manage 198:111918. https://doi.org/10.1016/j.enconman.2019.111918 37. Kadoi K, Murakami A, Shinozaki K et al (2016) Crack repair welding by CMT brazing using low melting point filler wire for long-term used steam turbine cases of Cr-Mo-V cast steels. Mater Sci Eng A 666:11–18 38. Chen XR, Zhai QJ, Dong H et al (2020) Molybdenum alloying in cast iron and steel. Adv Manuf 8:3–14 39. Bian J, Mohrbacher H, Zhang JS et al (2015) Application potential of high performance steels for weight reduction and efficiency increase in commercial vehicles. Adv Manuf 3:27–36 40. Sirohi S, Gupta A, Pandey C et al (2022) Investigation of the microstructure and mechanical properties of the laser welded joint of P22 and P91 steel. Opt Laser Technol 147:107610. https://doi.org/10.1016/j.optlastec.2021.107610 41. Anand R, Sudha C, Karthikeyan T et al (2009) Effectiveness of Ni-based diffusion barriers in preventing hard zone formation in ferritic steel joints. J Mater Sci 44:257–265 42. Anand R, Sudha C, Paul VT et al (2010) Microstructural changes in Grade 22 ferritic steel clad successively with Ni-based and 9Cr filler metals. Weld J 89:65–74 |