1. Feng X, Ma L, Liang H et al (2020) Osteointegration of 3D-printed fully porous polyetheretherketone scaffolds with different pore sizes. ACS Omega 5(41):26655-26666 2. Rodríguez-Parada L, Mayuet PF, Gámez AJ (2019) Evaluation of reliefs' properties on design of thermoformed packaging using fused deposition modelling moulds. Materials 12(3):478. https://doi.org/10.3390/ma12030478 3. Galatas A, Hassanin H, Zweiri Y et al (2018) Additive manufactured sandwich composite/ABS parts for unmanned aerial vehicle applications. Polymers 10(11):1262. https://doi.org/10.3390/polym10111262 4. Daneshmand S, Aghanajafi C (2012) Description and modeling of the additive manufacturing technology for aerodynamic coefficients measurement. Stroj Vestn J Mech E 58(2):125-133 5. Espalin D, Muse DW, Macdonald E et al (2014) 3D printing multifunctionality:structures with electronics. Int J Adv Manuf Tech 72(5/8):963-978 6. Yang C, Tian X, Li D et al (2017) Influence of thermal processing conditions in 3D printing on the crystallinity and mechanical properties of peek material. J Mater Process Tech 248:1-7 7. Sun Q, Rizvi GM, Bellehumeur CT et al (2008) Effect of processing conditions on the bonding quality of FDM polymer filaments. Rapid Prototyp J 14(2):72-80 8. Shelton TE, Willburn ZA, Hartsfield CR et al (2019) Effects of thermal process parameters on mechanical interlayer strength for additively manufactured Ultem 9085. Polym Test 81:106255. https://doi.org/10.1016/j.polymertesting.2019.106255 9. Heidari-Rarani M, Parisa S, Niloofar E (2020) Effect of processing parameters on tensile properties of FDM 3D printed of PLA specimens. J Sci Technol Compos 2(7):855-862 10. Rahmati A, Heidari-Rarani M, Lessard L (2021) A novel conservative failure model for the fused deposition modeling of polylactic acid specimens. Addit Manuf 48:102460. https://doi.org/10.1016/j.addma.2021.102460 11. Letcher T, Waytashek M (2014) Material property testing of 3D-printed specimen in PLA on an entry-level 3D printer. In:proceedings of the ASME 2014 international mechanical engineering congress and exposition. Volume 2A:Advanced Manufacturing. Montreal, Quebec, Canada. November 14-20, 2014. https://doi.org/10.1115/imece2014-39379 12. Peng A, Xiao X, Yue R (2014) Process parameter optimization for fused deposition modeling using response surface methodology combined with fuzzy inference system. Int J Adv Manuf Tech 73(1/4):87-100 13. Rajpurohit SR, Dave HK (2018) Analysis of tensile strength of a fused filament fabricated PLA part using an open-source 3D printer. Int J Adv Manuf Tech 101:1525-1536 14. Wang P, Zou B, Xiao H et al (2019) Effects of printing parameters of fused deposition modeling on mechanical properties, surface quality, and microstructure of peek. J Mater Process Tech 271:62-74 15. Chacón JM, Caminero MA, García PE et al (2017) Additive manufacturing of PLA structures using fused deposition modelling:effect of process parameters on mechanical properties and their optimal selection. Mater Des 124:143-157 16. Samykano M, Selvamani SK, Kadirgama K et al (2019) Mechanical property of FDM printed ABS:influence of printing parameters. Int J Adv Manuf Tech 102:2779-2796 17. Camargo JC, Machado LR, Almeida EC et al (2019) Mechanical properties of PLA-graphene filament for FDM 3D printing. Int J Adv Manuf Tech 103(5):2423-2443 18. Liu X, Zhang M, Li S et al (2017) Mechanical property parametric appraisal of fused deposition modeling parts based on the gray Taguchi method. Int J Adv Manuf Tech 89(5/8):2387-2397 19. Mst FA, Masood SH, Iovenitti P et al (2016) Effects of part build orientations on fatigue behaviour of FDM-processed PLA material. Prog Addit Manuf 1:21-28 20. Afrose MF, Masood SH, Nikzad M et al (2014) Effects of build orientations on tensile properties of PLA material processed by FDM. Adv Mat Res 1044/1045:31-34 21. Gonabadi H, Yadav A, Bull SJ (2020) The effect of processing parameters on the mechanical characteristics of PLA produced by a 3D FFF printer. Int J Adv Manuf Tech 111(3/4):695-709 22. Heidari-Rarani M, Ezati N, Parisa S et al (2020) Optimization of FDM process parameters for tensile properties of polylactic acid specimens using Taguchi design of experiment method. J Thermoplast Compos Mater 3:1-18 23. Zhou X, Hsieh SJ, Wang JC (2019) Accelerating extrusion-based additive manufacturing optimization processes with surrogate-based multi-fidelity models. Int J Adv Manuf Tech 103(1):4071-4083 24. Panda SK, Padhee S, Sood AK et al (2009) Optimization of fused deposition modelling (FDM) process parameters using bacterial foraging technique. Intell Inf Manag 1(2):89-97 25. Gurrala PK, Regalla SP (2014) Part strength evolution with bonding between filaments in fused deposition modelling. Virtual Phys Prototyp 9:141-149 26. Costa SF, Duarte FM, Covas JA (2015) Thermal conditions affecting heat transfer in FDM/FFE:a contribution towards the numerical modelling of the process. Virtual Phys Prototyp 10:35-46 27. Heidari-Rarani M, Rafiee-Afarani M, Zahedi AM (2019) Mechanical characterization of FDM 3D printing of continuous carbon fiber reinforced PLA composites. Compos B Eng 175:107147. https://doi.org/10.1016/j.compositesb.2019.107147 28. Standards B (2012) Plastics-determination of tensile properties-Part 1:general principles (ISO 527-1:2012). CEN/TC 249-Plastics 29. Roger TF (1979) Principles of polymer processing. The Macmician Press Ltd., London. https://doi.org/10.1007/978-1-349-16234-5 30. Zehev T, Costas GG (1979) Principles of polymer processing. Wiley, New York. https://doi.org/10.1002/aic.690260135 31. Bower DI (1981) An Introduction to polymer physics. Cambridge University Press, Cambridge 32. Ward IM, Sweeney J (2013) Mechanical properties of solid polymers, 3rd edn. Wiley, New York 33. Shibata M, Inoue Y, Miyoshi M (2006) Mechanical properties, morphology, and crystallization behavior of blends of poly(l-lactide) with poly(butylene succinate-co-l-lactate) and poly(butylene succinate). Polymer 47(10):3557-3564 34. Pillin I, Montrelay N, Grohens Y (2006) Thermo-mechanical characterization of plasticized PLA:is the miscibility the only significant factor? Polymer 47(13):4676-4682 |