Advances in Manufacturing ›› 2023, Vol. 11 ›› Issue (3): 541-565.doi: 10.1007/s40436-022-00416-y
• ARTICLES • Previous Articles
Xue-hong Shen1,2, Chang-Feng Yao1,2, Liang Tan1,2, Ding-Hua Zhang1,2
Received:
2021-10-19
Revised:
2022-02-13
Online:
2023-09-09
Published:
2023-09-09
Contact:
Liang Tan,E-mail:tanliang@nwpu.edu.cn
E-mail:tanliang@nwpu.edu.cn
Supported by:
Xue-hong Shen, Chang-Feng Yao, Liang Tan, Ding-Hua Zhang. Prediction model of surface integrity characteristics in ball end milling TC17 titanium alloy[J]. Advances in Manufacturing, 2023, 11(3): 541-565.
1. Wang HT, Fang ZZ, Sun P (2010) A critical review of mechanical properties of powder metallurgy titanium. Int J Powder Metall 46(5):45-57 2. Pimenov DY, Mia M, Gupta MK et al (2021) Improvement of machinability of Ti and its alloys using cooling-lubrication techniques: a review and future prospect. J Mater Res Technol 11:719-753 3. Gupta K, Laubscher RF (2017) Sustainable machining of titanium alloys: a critical review. Proc IMechE Part B J Eng Manuf 231:1-18 4. Wang C (2018) High temperature deformation behavior of TC17 alloy. Mater Sci Appl 9(9):732-739 5. Wang MJ, Huang H, Li SQ et al (2016) Microstructural difference between unreinforced canning of TC17 alloy and the matrix in SiCf/TC17 composite fabricated by HIP process. Mater Sci Forum 849:402-408 6. Jamil M, Zhao W, He N et al (2021) Sustainable milling of Ti-6Al- 4V: a trade-off between energy efficiency, carbon emissions and machining characteristics under MQL and cryogenic environment. J Clean Prod 281:125374. https://doi.org/10.1016/j.jclepra.2020.125374 7. Che-Haron CH, Jawaid A (2005) The effect of machining on surface integrity of titanium alloy Ti-6%Al-4%V. J Mater Process Technol 166(2):188-192 8. Yang XY, Ren CZ, Wang Y et al (2012) Experimental study on surface integrity of Ti-6Al-4V in high speed side milling. Trans Tianjin Univ 18(3):206-212 9. Hassanpour H, Rasti A, Sadeghi MH et al (2020) Investigation of roughness, topography, microhardness, white layer and surface chemical composition in high speed milling of Ti-6Al-4V using minimum quantity lubrication. Mach Sci Technol 24(5):719-738 10. Yao CF, Wu DX, Jin QC et al (2013) Influence of high-speed milling parameter on 3D surface topography and fatigue behavior of TB6 titanium alloy. Trans Nonferr Metal Soc 23(3):650-660 11. Liu JY, Sun JF, Chen WY (2017) Surface integrity of TB6 titanium alloy after dry milling with solid carbide cutters of different geometry. Int J Adv Manuf Technol 92(3):4183-4198 12. Yang D, Liu ZQ (2015) Surface topography analysis and cutting parameters optimization for peripheral milling titanium alloy Ti-6Al-4V. Int J Refract Met H 51:192-200 13. Weber D, Kirsch B, Chighizola CR et al (2021) Analysis of machining-induced residual stresses of milled aluminum workpieces, their repeatability, and their resulting distortion. Int J Adv Manuf Technol 115(1/4):1-22 14. Nespor D, Denkena B, Grove T et al (2015) Differences and similarities between the induced residual stresses after ball end milling and orthogonal cutting of Ti-6Al-4V. J Mater Process Technol 226:15-24 15. Yang D, Xiao X, Liu YL et al (2019) Peripheral milling-induced residual stress and its effect on tensile-tensile fatigue life of aeronautic titanium alloy Ti-6Al-4V. Aeronaut J 123:212-229 16. Shen XH, Zhang DH, Yao CF et al (2021) Formation mechanism of surface metamorphic layer and influence rule on milling TC17 titanium alloy. Int J Adv Manuf Technol 112(6):1-18 17. Yue CX, Hao XL, Ji X et al (2020) Analytical prediction of residual stress in the machined surface during milling. Metals 10(4):498-518 18. Li X, Wang ZM, Yang SL et al (2021) Influence of turning tool wear on the surface integrity and anti-fatigue behavior of Ti1023. Adv Mech Eng 13(4):1-12 19. Sun J, Guo YB (2009) A comprehensive experimental study on surface integrity by end milling Ti-6Al-4V. J Mater Process Technol 209(8):4036-4042 20. Oosthuizen AG, Nunco K, Conradie JTP et al (2016) The effect of cutting parameters on surface integrity in milling Ti6Al4V. S Afr J Ind Eng 27:115-123 21. Safari H, Sharif S, Izman S et al (2015) Surface integrity characterization in high-speed dry end milling of Ti-6Al-4V titanium alloy. Int J Adv Manuf Technol 78(1):651-657 22. Velásquez JDP, Tidu A, Bolle B et al (2010) Sub-surface and surface analysis of high speed machined Ti-6Al-4V alloy. Mater Sci Eng A-Struct 527(10/11):2572-2578 23. Liang XL, Liu ZQ, Wang B (2020) Dynamic recrystallization characterization in Ti-6Al-4V machined surface layer with process-microstructure-property correlations. Appl Surf Sci 530:147184. https://doi.org/10.1016/j.apsusc.2020.147184 24. Wang QQ, Liu ZQ, Wang B et al (2016) Evolutions of grain size and micro-hardness during chip formation and machined surface generation for Ti-6Al-4V in high-speed machining. Int J Adv Manuf Technol 82(9/12):1725-1736 25. Li BX, Zhang S, Li JF et al (2020) Quantitative evaluation of mechanical properties of machined surface layer using automated ball indentation technique. Mater Sci Eng A-Struct 773(31):138717. https://doi.org/10.1016/j.msea.2019.138717 26. Patil S, Jadhav S, Kekade S et al (2016) The influence of cutting heat on the surface integrity during machining of titanium alloy Ti6Al4V. Procedia Manuf 5:857-869 27. Yao CF, Wu DX, Ma LF et al (2016) Surface integrity evolution and fatigue evaluation after milling mode, shot-peening and polishing mode for TB6 titanium alloy. Appl Surf Sci 387(30):1257-1264 28. Sun JF, Wang TM, Su AP et al (2018) Surface integrity and its influence on fatigue life when turning nickel alloy GH4169. Procedia CIRP 71:478-483 29. De Los RER, Trull M, Levers A (2000) Modelling fatigue crack growth in shot-peened components of Al 2024-T351. Fatigue Fract Eng Mater 23(8):709-716 30. Nie XF, He WF, Zang SL et al (2014) Effect study and application to improve high cycle fatigue resistance of TC11 titanium alloy by laser shock peening with multiple impacts. Surf Coat Technol 253:68-75 31. Zuo JH, Wang ZG, Han EH (2008) Effect of microstructure on ultra-high cycle fatigue behavior of Ti-6Al-4V. Mater Sci Eng A-Struct 473(1/2):147-152 32. Hultgren G, Mansour R, Barsoum Z et al (2021) Fatigue probability model for AWJ-cut steel including surface roughness and residual stress. J Constr Steel Res 179:106537. https://doi.org/10.1016/j.jcsr.2021.106537 33. Shen XH, Zhang DH, Tan L (2020) Effects of cutter path orientations on milling force, temperature, and surface integrity when ball end milling of TC17 alloy. Proc IMechE Part B J Eng Manuf 235(6/7):1212-1224 34. UNE-EN 15305-2010 (2010) Non-destructive testing - test method for residual stress analysis by X-ray diffraction. The Spanish Association for Standardization and Certification 35. Tan L, Zhang DH, Yao CF et al (2017) Evolution and empirical modeling of compressive residual stress profile after milling, polishing and shot peening for TC17 alloy. J Manuf Process 26:155-165 36. Wang LP, Ge SY, Si H et al (2020) Elliptical model for surface topography prediction in five-axis flank milling. Chin J Aeronaut 33(4):1361-1374 37. Shan CW, Zhang X, Shen B et al (2019) An improved analytical model of cutting temperature in orthogonal cutting of Ti6Al4V. Chin J Aeronaut 156(03):217-227 38. Swaminathan S, Shankar MR, Lee S et al (2005) Large strain deformation and ultra-fine grained materials by machining. Mater Sci Eng A-Struct 410(12):358-363 39. Zhou Z, Yao CF, Zhao Y et al (2021) Effect of ultrasonic impact treatment on the surface integrity of nickel alloy 718. Adv Manuf 9(1):160-171 |
[1] | Zhi-Jie Jiao, Jun-Yi Luo, Zhi-Qiang Wang, Zhi-Peng Xu, Chun-Yu He, Zhong Zhao. Research and application of the angular rolling technology for plate mill [J]. Advances in Manufacturing, 2023, 11(3): 462-476. |
[2] | Qi-Dong Sun, Jie Sun, Kai Guo, Saad Waqar, Jiang-Wei Liu, Lei-Shuo Wang. Influences of processing parameters and heat treatment on microstructure and mechanical behavior of Ti-6Al-4V fabricated using selective laser melting [J]. Advances in Manufacturing, 2022, 10(4): 520-540. |
[3] | Bao-Cai Zhang, Shi-Fei Chen, Nasim Khiabani, Yu Qiao, Xin-Chang Wang. Research on the underlying mechanism behind abrasive flow machining on micro-slit structures and simulation of viscoelastic media [J]. Advances in Manufacturing, 2022, 10(3): 382-396. |
[4] | Miao-Xian Guo, Jin Liu, Li-Mei Pan, Chong-Jun Wu, Xiao-Hui Jiang, Wei-Cheng Guo. An integrated machine-process-controller model to predict milling surface topography considering vibration suppression [J]. Advances in Manufacturing, 2022, 10(3): 443-458. |
[5] | Kai Ding, Yuan-Heng Zhang, Shang-Fei Qiao, Guan-Zhi Wu, Tao Wei, Xia Liu, Yu-Lai Gao. Formation of the anomalous microstructure in the weld metal of Co-based alloy/AISI 410 stainless steel dissimilar welded joint [J]. Advances in Manufacturing, 2022, 10(2): 250-259. |
[6] | Ammar H. Elsheikh, S. Shanmugan, T. Muthuramalingam, Amrit Kumar Thakur, F. A. Essa, Ahmed Mohamed Mahmoud Ibrahim, Ahmed O. Mosleh. A comprehensive review on residual stresses in turning [J]. Advances in Manufacturing, 2022, 10(2): 287-312. |
[7] | Omar Ahmed Mohamed, Syed Hasan Masood, Wei Xu. Nickel-titanium shape memory alloys made by selective laser melting:a review on process optimisation [J]. Advances in Manufacturing, 2022, 10(1): 24-58. |
[8] | Yong-Cheng Lin, Jiang-Shan Zhu, Jia-Yang Chen, Jun-Quan Wang. Residual-stress relaxation mechanism and model description of 5052H32 Al alloy spun ellipsoidal heads during annealing treatment [J]. Advances in Manufacturing, 2022, 10(1): 87-100. |
[9] | Jiang Guo, Bin Wang, Zeng-Xu He, Bo Pan, Dong-Xing Du, Wen Huang, Ren-Ke Kang. A novel method for workpiece deformation prediction by amending initial residual stress based on SVR-GA [J]. Advances in Manufacturing, 2021, 9(4): 483-495. |
[10] | Hao-Yang Zhang, Nan Zhang, Wei Han, Hong-Gang Zhang, Michael D. Gilchrist, Feng-Zhou Fang. Characterization of process and machine dynamics on the precision replication of microlens arrays using microinjection moulding [J]. Advances in Manufacturing, 2021, 9(3): 319-341. |
[11] | Ji-Yin Zhang, Chang-Feng Yao, Min-Chao Cui, Liang Tan, Yun-Qi Sun. Three-dimensional modeling and reconstructive change of residual stress during machining process of milling, polishing, heat treatment, vibratory finishing, and shot peening of fan blade [J]. Advances in Manufacturing, 2021, 9(3): 430-445. |
[12] | Yan-Zhe Zhao, Kai Guo, Vinothkumar Sivalingam, Jian-Feng Li, Qi-Dong Sun, Zhao-Ju Zhu, Jie Sun. Surface integrity evolution of machined NiTi shape memory alloys after turning process [J]. Advances in Manufacturing, 2021, 9(3): 446-456. |
[13] | Yan-Le Li, Zi-Jian Wang, Wei-Dong Zhai, Zi-Nan Cheng, Fang-Yi Li, Xiao-Qiang Li. The influence of ultrasonic vibration on parts properties during incremental sheet forming [J]. Advances in Manufacturing, 2021, 9(2): 250-261. |
[14] | Rityuj Singh Parihar, Raj Kumar Sahu, Srinivasu Gangi Setti. Novel design and composition optimization of self-lubricating functionally graded cemented tungsten carbide cutting tool material for dry machining [J]. Advances in Manufacturing, 2021, 9(1): 34-46. |
[15] | Jia-Yang Chen, Yong-Cheng Lin, Guo-Dong Pang, Xin-He Li. Effects of spinning parameters on microstructures of ellipsoidal heads during marginal-restraint mandrel-free spinning [J]. Advances in Manufacturing, 2020, 8(4): 457-472. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Tel: 86-21-66135510
Fax: 86-21-66132736
E-mail: aim@oa.shu.edu.cn