Advances in Manufacturing ›› 2023, Vol. 11 ›› Issue (2): 248-263.doi: 10.1007/s40436-022-00433-x
• ARTICLES • Previous Articles
Jon Martin Fordal1, Per Schj?lberg1, Hallvard Helgetun2, Tor ?istein Skjermo2, Yi Wang3, Chen Wang3,4
Received:
2022-03-09
Revised:
2022-05-04
Published:
2023-05-20
Contact:
Jon Martin Fordal,E-mail:jon.m.fordal@ntnu.no
E-mail:jon.m.fordal@ntnu.no
Supported by:
Jon Martin Fordal, Per Schj?lberg, Hallvard Helgetun, Tor ?istein Skjermo, Yi Wang, Chen Wang. Application of sensor data based predictive maintenance and artificial neural networks to enable Industry 4.0[J]. Advances in Manufacturing, 2023, 11(2): 248-263.
1. The European Commission (2020) Commission welcomes political agreement on 7.5 billion EUR Digital Europe Programme. European Commission. https://ec.europa.eu/commission/presscorner/detail/en/IP_20_2406. Accessed 12 Mar 2021 2. Wang Y, Ma HS, Yang JH et al (2017) Industry 4.0: a way from mass customization to mass personalization production. Adv Manuf 5(4):311–320 3. Standardization Council Industrie 4.0 (2018) The standardisation roadmap of predictive maintenance for Sino-German Industrie 4.0/intelligent manufacturing. Federal Ministry of Economic Affairs and Energy. https://www.dke.de/resource/blob/1711308/ad04db2c91a6749c86e7311c1a294644/the-standardisation-roadmap-of-predictive-maintenance-for-sino-german-industrie-4-0-data.pdf. Accessed 21 Oct 4. The subcommittee on advanced manufacturing committee on technology (2018) Strategy for American leadership in advanced manufacturing. Executive Office of The President of The United States. https://trump white house.archives.gov/wpcontent/uploads/2018/10/Advanced-Manufacturing-Strategic-Plan-2018.pdf. Accessed 21 Oct 2020 5. Kagermann H, Helbig J, Hellinger A et al (2013) Recommendations for implementing the strategic initiative INDUSTRIE 4.0: securing the future of German manufacturing industry; final report of the Industrie 4.0 working group. Acatech – National Academy of Science and Engineering. https://en.acatech.de/publication/recommendations-for-implementing-the-strategic-initiative-industrie-4-0-final-report-of-the-industrie-4-0-working-group/download-pdf?lang=en. Accessed 14 Aug 2018 6. Strandhagen JW, Alfnes E, Strandhagen JO et al (2017) The fit of Industry 4.0 applications in manufacturing logistics: a multiple case study. Adv Manuf 5(4):344–358 7. Wang S, Wan J, Li D et al (2016) Implementing smart factory of Industrie 4.0: an outlook. Int J Distrib Sens Netw 1:5. https://doi.org/10.1155/2016/3159805 8. Bokrantz J, Skoogh A, Berlin C et al (2017) Maintenance in digitalised manufacturing: delphi-based scenarios for 2030. Int J Prod Econ 191:154–169 9. Xu X (2012) From cloud computing to cloud manufacturing. Robot Comput Integr Manuf 28(1):75–86 10. R?dseth H, Schj?lberg P, Marhaug A (2017) Deep digital maintenance. Adv Manuf 5(4):299–310 11. Wang KS, Sharma VS, Zhang ZY (2014) SCADA data based condition monitoring of wind turbines. Adv Manuf 2(1):61–69 12. Welte TM, Wang K (2014) Models for lifetime estimation: an overview with focus on applications to wind turbines. Adv Manuf 2(1):79–87 13. Zhang ZY, Wang KS (2014) Wind turbine fault detection based on SCADA data analysis using ANN. Adv Manuf 2(1):70–78 14. Wang KS, Li Z, Braaten J et al (2015) Interpretation and compensation of backlash error data in machine centers for intelligent predictive maintenance using ANNs. Adv Manuf 3(2):97–104 15. Zhang Z, Wang Y, Wang K (2013) Intelligent fault diagnosis and prognosis approach for rotating machinery integrating wavelet transform, principal component analysis, and artificial neural networks. Int J Adv Manuf Technol 68(1/4):763–773 16. Wu D, Jennings C, Terpenny J et al (2017) A comparative study on machine learning algorithms for smart manufacturing: tool wear prediction using random forests. J Manuf Sci Eng Trans ASME. https://doi.org/10.1115/1.4036350 17. Zhao H, Liu H, Hu W et al (2018) Anomaly detection and fault analysis of wind turbine components based on deep learning network. Renew Energy 127:825–834 18. Staufen AG (2019) German Industry 4.0 Index 2019. Staufen AG. https://www.staufen.ag/wp-content/uploads/STAUFEN.-Study-Industry-4-0-index-2019-en_.pdf. Accessed 29 Jun 2020 19. Albano M, Lino Ferreira L, Di Orio G et al (2020) Advanced sensor-based maintenance in real-world exemplary cases. Automatika 61(4):537–553 20. Li Z, Wang Y, Wang KS (2017) Intelligent predictive maintenance for fault diagnosis and prognosis in machine centers: Industry 4.0 scenario. Adv Manuf 5(4):377–387 21. Fleischer J, Klee B, Spohrer A et al (2018) Guideline sensors for Industrie 4.0. VDMA Forum Industrie 4.0. https://www.future-of-laundries.com/fileadmin/user_upload/Hohenstein_FoL/Schulungen/63_2018_VDMA_Guideline_Sensors_for_Industry_40.pdf. Accessed 12 Nov 2019 22. Forrester (2020) Contextualized data and digital twins amplify digitization value. Forrester Research Inc. https://cdn2.hubspot.net/hubfs/6407318/Cognite%20Contextual%20Data%20TLP_Final.pdf?__hssc=104050655.17.1603873515323&__hstc=104050655.ec5d933ed4ad71a54197baeb9fe21e74.1602061432611.1603869611782.1603873515323.3&__hsfp=2526773432&hsCtaTracking=05aecef9-ac55-4c16-9d51-710f2001fbe1%7Cf6b4bf1b-bfa3-47b3-a16d-609b2e4058bb. Accessed 03 Nov 2020 23. Perera C, Liu CH, Jayawardena S et al (2015) A survey on internet of things from industrial market perspective. IEEE Access 2:1660–1679 24. Lee CKM, Zhang SZ, Ng KKH (2017) Development of an industrial Internet of things suite for smart factory towards reindustrialization. Adv Manuf 5(4):335–343 25. Li X, Li D, Wan J et al (2017) A review of industrial wireless networks in the context of Industry 4.0. Wirel Netw 23(1):23–41 26. Ferreira LL, Albano M, Silva J et al (2017) A pilot for proactive maintenance in industry 4.0, Institute of Electrical and Electronics Engineers Inc. https://doi.org/10.1109/WFCS.2017.7991952 27. Standardization Council Industrie 4.0 (2020) German standardization roadmap Industrie 4.0. DIN and DKE roadmap. https://www.din.de/resource/blob/65354/619baa1958b89b8a7b6cd9be2b79f223/roadmap-i4-0-e-data.pdf. Accessed 09 Sep 2021 28. Standardization Council Industrie 4.0 (2018) Alignment Report for Reference Architectural Model for Industrie 4.0/Intelligent Manufacturing System Architecture. German Federal Ministry of Economic Affairs and Energy. https://www.dke.de/resource/blob/1711304/2e4d62811e90ee7aad10eeb6fdeb33d2/alignment-report-for-reference-architectural-model-for-industrie-4-0-data.pdf. Accessed 17 Jan 2022 29. Pivoto DGS, de Almeida LFF, da Rosa RR et al (2021) Cyber-physical systems architectures for industrial internet of things applications in Industry 4.0: a literature review. J Manuf Syst 58:176–192 30. Nakagawa EY, Antonino PO, Schnicke F et al (2021) Industry 4.0 reference architectures: state of the art and future trends. Comput Ind Eng 156:107241. https://doi.org/10.1016/j.cie.2021.107241 31. Mohamed M (2018) Challenges and benefits of Industry 4.0: an overview. Int J Supply Oper Manag 5(3):256–265 32. Komonen K (2002) A cost model of industrial maintenance for profitability analysis and benchmarking. Int J Prod Econ 79(1):15–31 33. Pagliosa M, Tortorella G, Ferreira JCE (2021) Industry 4.0 and lean manufacturing: a systematic literature review and future research directions. J Manuf Technol Manag 32(3):543–569 34. Buer SV, Strandhagen JO, Chan FTS (2018) The link between Industry 4.0 and lean manufacturing: mapping current research and establishing a research agenda. Int J Prod Res 56(8):2924–2940 35. Roosefert MT, Preetha RJ, Annie UR et al (2021) Intelligent machine learning based total productive maintenance approach for achieving zero downtime in industrial machinery. Comput Ind Eng 157:107267. https://doi.org/10.1016/j.cie.2021.107267 36. Pinto G, Silva FJG, Fernandes NO et al (2020) Implementing a maintenance strategic plan using TPM methodology. Int J Ind Eng Manag 11(3):192–204 37. Ran Y, Zhou X, Lin P et al (2019) A survey of predictive maintenance: systems, purposes and approaches. arXiv preprint arXiv:1912.07383 38. Standard Norge (2017) NS-EN 13306:2017 Maintenance – Maintenance terminology. Standard Norge. https://www.standard.no/no/Nettbutikk/produktkatalogen/Produktpresentasjon/?ProductID=1022000. Accessed 18 Oct 2021 39. Staufen AG (2018) German Industry 4.0 Index 2018. Staufen AG. https://www.staufen.ag/wp-content/uploads/STAUFEN.-Study-Industry-4.0-Index-2018-Web-DE-en.pdf. Accessed 20 Jun 2019 40. Standardization Council Industrie 4.0 (2019) The standardisation roadmap of predictive maintenance for Sino-German Industrie 4.0/intelligent manufacturing. Federal Ministry of Economic Affairs and Energy.https://sddc46de0af98cafb.jimcontent.com/download/version/1584353515/module/6143403066/name/The_Standardization_Roadmap_of_Predictive_Maintenance_V2.pdf. Accessed 22 Oct 2020 41. Han X, Wang Z, Xie M et al (2021) Remaining useful life prediction and predictive maintenance strategies for multi-state manufacturing systems considering functional dependence. Reliab Eng Syst Saf 210:107560. https://doi.org/10.1016/j.ress.2021.107560 42. Bhargava C, Sharma PK, Senthilkumar M et al (2020) Review of health prognostics and condition monitoring of electronic components. IEEE Access 8:75163–75183 43. Porter ME (1985) Competitive advantage—creating and sustaining superior performance. Free Press, New York 44. Rymaszewska A, Helo P, Gunasekaran A (2017) IoT powered servitization of manufacturing—an exploratory case study. Int J Prod Econ 192:92–105 45. Porter ME, Heppelmann JE (2015) How smart, connected products are transforming companies. Harv Bus Rev 93(10):96–114 46. Fordal JM, R?dseth H, Schj?lberg P (2019) Initiating industrie 4.0 by implementing sensor management??improving operational availability. In: International Workshop of Advanced Manufacturing 2019, vol 484. Springer, Changzhou. https://doi.org/10.1007/978-981-13-2375-1_26 47. Fordal JM, Bernhardsen TI, R?dseth H et al (2020) Balanced maintenance program with a value chain perspective. In: Lecture notes in electrical engineering, vol 634. LNEE. https://doi.org/10.1007/978-981-15-2341-0_39 48. Steenwinckel B, De Paepe D, Vanden HS et al (2021) FLAGS: a methodology for adaptive anomaly detection and root cause analysis on sensor data streams by fusing expert knowledge with machine learning. Future Gener Comput Syst 116:30–48 49. Ramamurthy H, Prabhu BS, Gadh R et al (2007) Wireless industrial monitoring and control using a smart sensor platform. IEEE Sens J 7(5):611–617 50. Ca?ete E, Chen J, Díaz M et al (2015) Sensor4PRI: a sensor platform for the protection of railway infrastructures. Sensors 15(3):4996–5019 51. Kabugo JC, J?ms?-Jounela SL, Schiemann R et al (2020) Industry 4.0 based process data analytics platform: a waste-to-energy plant case study. Int J Electr Power Energy Syst 115:105508. https://doi.org/10.1016/j.ijepes.2019.105508 52. Zezulka F, Marcon P, Vesely I et al (2016) Industry 4.0—an introduction in the phenomenon. IFAC-PapersOnLine 49(25):8–12 53. Bousdekis A, Lepenioti K, Ntalaperas D et al (2019) A RAMI 4.0 view of predictive maintenance: software architecture, platform and case study in steel industry. In: Proper H, Stirna J (eds) Advanced information systems engineering workshops. CAiSE 2019. Lecture notes in business information processing, vol 349. Springer, pp 95–106. https://doi.org/10.1007/978-3-030-20948-3_9 54. Efthymiou K, Papakostas N, Mourtzis D et al (2012) On a predictive maintenance platform for production systems, Elsevier B.V., pp 221–226. https://doi.org/10.1016/j.procir.2012.07.039 55. May G, Kyriakoulis N, Apostolou K et al (2018) Predictive maintenance platform based on integrated strategies for increased operating life of factories, . In: Moon, I., Lee, G., Park, J., Kiritsis, D., von Cieminski, G. (eds) Advances in Production Management Systems. Smart Manufacturing for Industry 4.0. APMS, Seoul, August 2018. IFIP Advances in Information and Communication Technology, vol 536. Springer, Cham, p 279 56. Mittal S, Khan MA, Romero D et al (2019) Smart manufacturing: characteristics, technologies and enabling factors. Proc Inst Mech Eng Part B J Eng Manuf 233(5):1342–1361 57. Rebecca AAH, Yishu Mao, Manlai N et al (2020) China's digital platform economy: assessing developments towards Industry 4.0. Challenges and opportunities for German actors. Mercator Institute for China Studies. https://merics.org/sites/default/files/2020-06/MERICSReportDigitalPlatformEconomyEN02.pdf. 58. Standardization Council Industrie 4.0 (2018) German standardization roadmap Industrie 4.0. DIN and DKE roadmap. https://www.din.de/blob/65354/57218767bd6da1927b181b9f2a0d5b39/roadmap-i4-0-e-data.pdf. Accessed 12 Oct 2020 59. Alcácer V, Cruz-Machado V (2019) Scanning the Industry 4.0: a literature review on technologies for manufacturing systems. Eng Sci Technol Int J 22(3):899–919 60. Mittal S, Khan MA, Romero D et al (2018) A critical review of smart manufacturing & Industry 4.0 maturity models: implications for small and medium-sized enterprises (SMEs). J Manuf Syst 49:194–214 61. Li S, Xu LD, Zhao S (2015) The internet of things: a survey. Inf Syst Front 17(2):243–259 62. International Organization for Standardization (2018) ISO 17359:2018 Condition monitoring and diagnostics of machines - general guidelines. International Organization for Standardization. https://www.standard.no/no/Nettbutikk/produktkatalogen/Produktpresentasjon/?ProductID=960504. Accessed 20 Nov 2021 63. Standards Norway (2017) NORSOK Z-008:2017 Risk based maintenance and consequence classification. Standards Norway. https://www.standard.no/no/Nettbutikk/produktkatalogen/Produktpresentasjon/?ProductID=956000. Accessed 23 Nov 2021 64. International Organization for Standardization (2012) ISO 13379-1:2012 Condition monitoring and diagnostics of machines - data interpretation and diagnostics techniques. International Organization for Standardization. https://www.standard.no/no/Nettbutikk/produktkatalogen/Produktpresentasjon/?ProductID=529905. Accessed 25 Nov 2021 65. International Electrotechnical Commission (2013) IEC 62264-1:2013 Enterprise-control system integration. Part 1: models and terminology. International Electrotechnical Commission. https://www.standard.no/no/Nettbutikk/produktkatalogen/Produktpresentasjon/?ProductID=646191. Accessed 28 Nov 2021 66. Fordal JM (2022) Dataset–sensor data from industrial splitting saw machine. Zenodo. https://zenodo.org/record/6337356#.YUiEGhKhPY . Accessed 09 Apr 2022 67. R?dseth H, Eleftheriadis R, Lodgaard E et al (2019) Operator 4.0??emerging job categories in manufacturing. In: Lecture notes in electrical engineering, vol 484, Springer. https://doi.org/10.1007/978-981-13-2375-1_16 |
[1] | Mario Arena, Valentina Di Pasquale, Raffaele Iannone, Salvatore Miranda, Stefano Riemma. A maintenance driven scheduling cockpit for integrated production and maintenance operation schedule [J]. Advances in Manufacturing, 2022, 10(2): 205-219. |
[2] | Y. K. Liu, S. K. Ong, A. Y. C. Nee. State-of-the-art survey on digital twin implementations [J]. Advances in Manufacturing, 2022, 10(1): 1-23. |
[3] | Bin He, Kai-Jian Bai. Digital twin-based sustainable intelligent manufacturing: a review [J]. Advances in Manufacturing, 2021, 9(1): 1-21. |
[4] | Harald Rødseth, Per Schjølberg, Andreas Marhaug. Deep digital maintenance [J]. Advances in Manufacturing, 2017, 5(4): 299-310. |
[5] | Yi Wang, Hai-Shu Ma, Jing-Hui Yang, Ke-Sheng Wang. Industry 4.0: a way from mass customization to mass personalization production [J]. Advances in Manufacturing, 2017, 5(4): 311-320. |
[6] | C. K. M. Lee, S. Z. Zhang, K. K. H. Ng. Development of an industrial Internet of things suite for smart factory towards re-industrialization [J]. Advances in Manufacturing, 2017, 5(4): 335-343. |
[7] | Jo Wessel Strandhagen, Erlend Alfnes, Jan Ola Strandhagen, Logan Reed Vallandingham. The fit of Industry 4.0 applications in manufacturing logistics: a multiple case study [J]. Advances in Manufacturing, 2017, 5(4): 344-358. |
[8] | Jan Ola Strandhagen, Logan Reed Vallandingham, Giuseppe Fragapane, Jo Wessel Strandhagen, Aili Biriita Hætta Stangeland, Nakul Sharma. Logistics 4.0 and emerging sustainable business models [J]. Advances in Manufacturing, 2017, 5(4): 359-369. |
[9] | Zhe Li, Yi Wang, Ke-Sheng Wang. Intelligent predictive maintenance for fault diagnosis and prognosis in machine centers: Industry 4.0 scenario [J]. Advances in Manufacturing, 2017, 5(4): 377-387. |
[10] | Wladimir Bodrow. Impact of Industry 4.0 in service oriented firm [J]. Advances in Manufacturing, 2017, 5(4): 394-400. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Tel: 86-21-66135510
Fax: 86-21-66132736
E-mail: aim@oa.shu.edu.cn