1. Lin G, Hao B (2020) Research on green manufacturing technology. J Phys Conf Ser 1601:042046. https://doi.org/10.1088/1742-6596/1601/4/042046 2. Tekkaya AE (2018) Energy saving by manufacturing technology. Procedia Manuf 21:392–396 3. Cruz FRB, Kendall G, While L et al (2012) Throughput maximization of queueing networks with simultaneous minimization of service rates and buffers. Math Probl Eng 2012:1–19. https://doi.org/10.1155/2012/692593 4. Gao S, Higashi T, Kobayashi T et al (2020) Buffer allocation via bottleneck-based variable neighbourhood search. Appl Sci-Basel 10(23):8569. https://doi.org/10.3390/app10238569 5. Frigerio N, Matta A (2016) Analysis on energy efficients witching of machine tool with stochastic arrivals and buffer information. IEEE Trans Autom Sci Eng 13:238–246 6. Wang J, Fei Z, Chang Q et al (2019) Multi-state decision of unreliable machines for energy-efficient production considering work-in-process inventory. Int J Adv Manuf Technol 102:1009–1021 7. Alaouchiche Y, Ouazene Y, Yalaoui F (2021) Energy-efficient buffer allocation problem in unreliable production lines. Int J Adv Manuf Technol 114:2871–2885 8. Alaouchiche Y, Ouazene Y, Yalaoui F (2020) Economic and energetic performance evaluation of unreliable production lines: an integrated analytical approach. IEEE Access 8:185330–185345 9. Gao S (2022) A bottleneck detection-based tabu search algorithm for the buffer allocation problem in manufacturing systems. IEEE Access 10:60507–60520 10. Nahas N, Nourelfath M, Gendreau M (2014) Selecting machines and buffers in unreliable assembly/disassembly manufacturing networks. Int J Prod Econ 154:113–126 11. Smith JM (2018) Simultaneous buffer and service rate allocation in open finite queueing networks. IISE Trans 50(3):203–216 12. Ng AHC, Shaaban S, Bernedixen J (2017) Studying unbalanced workload and buffer allocation of production systems using multi-objective optimisation. Int J Prod Res 55(24):7435–7451 13. Xi S, Smith JM, Chen Q et al (2021) Simultaneous machine selection and buffer allocation in large unbalanced series-parallel production lines. Int J Prod Res 60(7):2103–2125 14. Renna P, Materi S (2021) A literature review of energy efficiency and sustainability in manufacturing systems. Appl Sci-Basel 11:7366. https://doi.org/10.3390/app11167366 15. Weiss S, Schwarz JA, Stolletz R (2019) The buffer allocation problem in production lines: formulations, solution methods, and instances. IISE Trans 51(5):456–485 16. Weiss S, Matta A, Stolletz R (2018) Optimization of buffer allocations in flow lines with limited supply. IISE Trans 50:191–202 17. Liberopoulos G (2020) Comparison of optimal buffer allocation in flow lines under installation buffer, echelon buffer, and CONWIP policies. Flex Serv Manuf J 32:297–365 18. Kose SY, Kilincci O (2015) Hybrid approach for buffer allocation in open serial production lines. Comput Oper Res 60:67–78 19. Koyuncuoğlu MU, Demir L (2021) A comparison of combat genetic and big bang–big crunch algorithms for solving the buffer allocation problem. J Intell Manuf 32:1529–1546 20. Cruz FRB (2009) Optimizing the throughput, service rate, and buffer allocation in finite queueing networks. Electron Notes Discrete Math 35:163–168 21. George Shanthikumar J, Xu SH (1997) Asymptotically optimal routing and service rate allocation in a multiserver queueing system. Oper Res 45(3):464–469 22. Song D, Xing W, Sun Y (1998) Optimal service rate allocation policy of an unreliable manufacturing system with random demands. Cont Theo Apps 15(4):621–626 23. Hillier FS, So KC (1996) On the simultaneous optimization of server and work allocations in production line systems with variable processing times. Oper Res 44(3):435–443 24. Nahas N, Nourelfath M (2018) Joint optimization of maintenance, buffers and machines in manufacturing lines. Eng Optimiz 50:37–54 25. Nahas N (2017) Buffer allocation and preventive maintenance optimization in unreliable production lines. J Intell Manuf 28:85–93 26. Yegul MF, Erenay FS, Striepe S et al (2017) Improving configuration of complex production lines via simulation-based optimization. Comput Ind Eng 109:295–312 27. Pedrielli G, Matta A, Alfieri A et al (2018) Design and control of manufacturing systems: a discrete event optimisation methodology. Int J Prod Res 56:543–564 28. Balsamo S (2011) Queueing networks with blocking: analysis, solution algorithms and properties. Springer, Berlin. https://doi.org/10.1007/978-3-642-02742-0_11 29. Gordon WJ, Newell GF (1967) Cyclic queuing systems with restricted length queues. Oper Res 15(2):266–277 30. Zhang M, Pastore E, Alfieri A et al (2021) Buffer allocation problem in production flow lines: a new Benders-decomposition-based exact solution approach. IISE Trans 54(5):421–434 31. Gao S, Rubrico JIU, Higashi T et al (2019) Efficient throughput analysis of production lines based on modular queues. IEEE Access 7:95314–95326 32. Gao S, Kobayashi T, Tajiri A et al (2021) Throughput analysis of conveyor systems involving multiple materials based on capability decomposition. Comput Ind 132:103526. https://doi.org/10.1016/j.compind.2021.103526 33. Yan FY, Wang JQ, Li Y et al (2021) An improved aggregation method for performance analysis of Bernoulli serial production Lines. IEEE Trans Autom Sci Eng 18:114–121 34. Mohammadi M, Dauzère-pérès S, Yugma C et al (2020) A queuebased aggregation approach for performance evaluation of a production system with an AMHS. Comput Oper Res 115:104838. https://doi.org/10.1016/j.cor.2019.104838 35. Bai Y, Tu J, Yang M et al (2021) A new aggregation algorithm for performance metric calculation in serial production lines with exponential machines: design, accuracy and robustness. Int J Prod Res 59:4072–4089 36. Florescu A, Barabas SA (2018) Simulation tool for assessing the performance of a flexible manufacturing system. IOP Conf Ser Mater Sci Eng 398:012023. https://doi.org/10.1088/1757-899X/398/1/012023 37. Oljira DG, Abeya TG, Ofgera G et al (2020) Manufacturing system modeling and performance analysis of mineral water production line using ARENA simulation. Int J Eng Adv Technol 9:312–317 38. Wang J, Xu C, Zhang J et al (2021) Big data analytics for intelligent manufacturing systems: a review. J Manuf Syst 62:738–752 39. Tsadiras AK, Papadopoulos CT, O’Kelly MEJ (2013) An artificial neural network based decision support system for solving the buffer allocation problem in reliable production lines. Comput Ind Eng 66:1150–1162 40. Demir L, Tunali S, Eliiyi DT (2014) The state of the art on buffer allocation problem: a comprehensive survey. J Intell Manuf 25:317–392 41. Ke G, Meng Q, Finley T et al (2017) LightGBM: a highly efficient gradient boosting decision tree. In: The 31st conference on neural information processing systems, NIPS, California 42. Sklearn. https://scikit-learn.org/stable/. Accessed 7 August 43. Hashim FA, Houssein EH, Hussain K et al (2022) Honey badger algorithm: new metaheuristic algorithm for solving optimization problems. Math Comput Simul 192:84–110 44. Chaudhari P, Thakur AK, Kumar R et al (2021) Comparison of NSGA-III with NSGA-II for multi objective optimization of adiabatic styrene reactor. Mater Today Proc 57(4):1509–1514 45. Niyomubyeyi O, Sicuaio TE, Díaz González JI et al (2020) A comparativestudy of four metaheuristic algorithms, AMOSA, MOABC, MSPSO, and NSGA-II for evacuation planning. Algorithms 13(1):16. https://doi.org/10.3390/a13010016 46. Deb K, Pratap A, Agarwal S et al (2002) A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE T Evolut Comput 6:182–197 47. Spinellis DD, Papadopoulos CT (2000) A simulated annealing approach for buffer allocation in reliable production lines. Ann Oper Res 93:373–384 48. Yelkenci KS, Kilincci O (2020) A multi-objective hybrid evolutionary approach for buffer allocation in open serial production lines. J Intel Manuf 31:33–51 49. Cruz FRB, Duarte AR, Souza GL (2018) Multi-objective performance improvements of general finite single-server queueing networks. J Heuristics 24:757–781 50. Su C, Shi Y, Dou J (2017) Multi-objective optimization of buffer allocation for remanufacturing system based on TS-NSGAII hybrid algorithm. J Clean Prod 166:756–770 51. Zhang K, Shen C, Liu X et al (2020) Multiobjective evolution strategy for dynamic multiobjective optimization. IEEE T Evolut Comput 24:974–988 52. Huang CL (1999) The construction of production performance prediction system for semiconductor manufacturing with artificial neural networks. Int J Prod Res 37:1387–1402 53. Mirjalili S, Mirjalili SM, Lewis A (2014) Grey wolf optimizer. Adv Eng Softw 69:46–61 54. Mirjalili S, Saremi S, Mirjalili SM et al (2016) Multi-objective grey wolf optimizer: a novel algorithm for multi-criterion optimization. Expert Syst Appl 47:106–119 55. Li L, Qian Y, Yang YM et al (2016) A fast algorithm for buffer allocation problem. Int J Prod Res 54:3243–3255 56. Demir L, Diamantidis AC, Eliiyi DT et al (2019) Optimal buffer allocation for serial production lines using heuristic search algorithms: a comparative study. Int J Ind Syst Eng 33:252. https://doi.org/10.1504/IJISE.2019.102473 57. Nahas N, Ait-Kadi D, Nourelfath M (2006) A new approach for buffer allocation in unreliable production lines. Int J Prod Econ 103:873–881 |