Advances in Manufacturing ›› 2024, Vol. 12 ›› Issue (3): 428-446.doi: 10.1007/s40436-024-00492-2
Previous Articles Next Articles
Jing Dai, Song-Zhe Xu, Chao-Yue Chen, Tao Hu, San-San Shuai, Wei-Dong Xuan, Jiang Wang, Zhong-Ming Ren
Received:2023-11-01
Revised:2023-12-21
Online:2024-09-07
Published:2024-09-07
Contact:
Song-Zhe Xu,E-mail:songzhex@shu.edu.cn
E-mail:songzhex@shu.edu.cn
Supported by:Jing Dai, Song-Zhe Xu, Chao-Yue Chen, Tao Hu, San-San Shuai, Wei-Dong Xuan, Jiang Wang, Zhong-Ming Ren. A multi-objective optimization based on machine learning for dimension precision of wax pattern in turbine blade manufacturing[J]. Advances in Manufacturing, 2024, 12(3): 428-446.
| 1. Zhang X, Bu K (2018) B-spline contour curve approximation and deformation analysis of complex ceramic core. Proc I Mech E Part B J Eng Manuf 233(6):1663-1673 2. Lu ZL, Jiang B, Zhou JP (2013) Review of main manufacturing processes of complex hollow turbine blades. Virtual Phys Prototy 8(2):87-95 3. Petes F, Voigt R, Blair M (1996) Dimensional repeatabililty of investment castings. In:9th world conference on investment casting. San Francisco 4. Jiang S, Zhang D, Wang W et al (2009) Estimation of displacement field for turbine blade profile based on reverse engineering in investment casting. Spec Cast Nonferrous Alloys 29(1):13-15 5. Wiens K, Eng P (2013) Airfoil thickness as a life limiting factor of gas turbine blades. In:20th symposium of the industrial application of gas turbines committee. Banff, Alberta, Canada. pp 1-14 6. Chauhan AS, Pradyumna R (2015) Shrinkage evaluation in a stepped wax pattern-a simulation approach. In:International conference on mechanical engineering design and analysis. Doha, Qatar 7. Yi CC, Yui JL, Shi CT et al (2011) Core deflection in plastics injection molding. Polym-Plast Technol Eng 50(9):863-872 8. Zhang DH, Cheng YY, Jiang RS et al (2018) Deformation simulation of investment casting and die cavity optimization of turbine blade. In:turbine blade investment casting die technology, Springer, Berlin, Heidelberg 9. Cui K, Wang W, Jiang R et al (2019) A wall-thickness compensation strategy for wax pattern of hollow turbine blade. Chin J Aeronaut 32(8):1982-1993 10. Zhang J, Wang S, Zhou H et al (2022) Manufacturable casting parts design with topology optimization of structural assemblies. Proc I Mech E Part B J Eng Manuf 236(4):401-412 11. Mondal NR, Rafiquzzaman M, Siddique MA et al (2020) Optimization of investment casting parameters to improve the mechanical properties by Taguchi method. Am J Mech Ind Eng 5(5):64-70 12. Vladimír K, Pavel N, Antonín Z et al (2022) Requirements for hybrid technology enabling the production of high-precision thin-wall castings. Materials 15(11):3805. https://doi.org/10.3390/ma15113805 13. Vdovin RA, Smelov VG, Sufiiarov VS et al (2018) Designing of the digital casting process for the gas turbine engine blades with a single-crystal structure. IOP Conf Ser Mater Sci Eng 441(1):012058. https://doi.org/10.1088/1757-899X/441/1/012058 14. Torres-Carrillo S, Siller HR, Vila CC et al (2020) Environmental analysis of selective laser melting in the manufacturing of aeronautical turbine blades. J Clean Prod 246(10):119068. https://doi.org/10.1016/j.jclepro.2019.119068 15. Chauhan AS, Anirudh B, Satyanarayana A et al (2020) FEA optimization of injection parameters in ceramic core development for investment casting of a gas turbine blade. Mater Today Proc 26:2190-2199 16. BakharevA FZ, Costa F et al (2004) Prediction of core shift effects using mold filling simulation. ANTEC-Conf Proc 1:621-625 17. Chauhan AS, Walale A, Satyanarayana A et al (2018) Analysis of shrinkage&warpage in ceramic injection molding of HPT vane leading edge core of a gas turbine casting. Mater Today Proc 5(9):19471-19479 18. He B, Wang DH, Li F et al (2014) Simulation study on wax injection for investment casting. Adv Mater Res 834:1575-1579 19. Oktem H, Erzurumlu T, Uzman I et al (2007) Application of Taguchi optimization technique in determining plastic injection molding process parameters for a thin-shell part. Mater Des 28(4):1271-1278 20. Cerda-Flores SC, Rojas-Punzo AA, Nápoles-Rivera F et al (2022) Applications of multi-objective optimization to industrial processes:a literature review. Processes 10(1):133. https://doi.org/10.3390/pr10010133 21. Samson C, Murugan K, Abhra R et al (2021) Optimization of process parameters using response surface methodology:a review. Mater Today Proc 37:1301-1304 22. Schmidt J, Marques M, Botti S et al (2019) Recent advances and applications of machine learning in solid-state materials science. NPJ Comput Mater 5(1):83. https://doi.org/10.1038/s41524-019-0221-0 23. Xu J, Tan W, Li T (2020) Predicting fan blade icing by using particle swarm optimization and support vector machine algorithm. Comput Electr Eng 87:106751. https://doi.org/10.1016/j.compeleceng.2020.106751 24. Shi D, Sun L, Xie Y (2020) Off-design performance prediction of a S-CO2 turbine based on field reconstruction using deep-learning approach. Appl Sci 10(14):4999. https://doi.org/10.3390/app10144999 25. Jamil TAMT, Roslan SAH, Rasid ZA et al (2021) Experimental and simulation of aerodynamic performance of the small-scale wind turbine blades for usage in Malaysia. IOP Conf Ser Mater Sci Eng 1092(1):012023. https://doi.org/10.1088/1757-899X/1092/1/012023 26. Akolekar HD, Waschkowski F, Zhao Y et al (2021) Transition modeling for low pressure turbines using computational fluid dynamics driven machine learning. Energies 14(15):4680. https://doi.org/10.3390/en14154680 27. Hamedi M, Farzaneh A (2014) Optimization of dimensional deviations in wax patterns for investment casting. J Comput Appl Mech 45(1):23-28 28. Shahane S, Aluru N, Ferreira P et al (2020) Optimization of solidification in die casting using numerical simulations and machine learning. J Manuf Proc 51:130-141 29. Ezhilsabareesh K, Rhee SH, Samad A (2018) Shape optimization of a bidirectional impulse turbine via surrogate models. Eng Appl Comput Fluid Mech 12(1):1-12 30. Herman A, Kubelková I, Vrátn O (2019) New use of instruments for more accurate wax pattern blade segment production. Arch Foundry Eng 19(2):101. https://doi.org/10.24425/afe.2019.127124 31. Zhang XH, Gao HS, Yu KH et al (2018) Crystal orientation effect and multi-fidelity optimization of a solid single crystal superalloy turbine blade. Comp Mater Sci 149:84-90 32. Li C, de Celis Leal DR, Rana S et al (2017) Rapid Bayesian optimisation for synthesis of short polymer fiber materials. Sci Rep 7(1):1-10 33. Kikuchi S, Oda H, Kiyohara S et al (2018) Bayesian optimization for efficient determination of metal oxide grain boundary structures. Phys B Condens Matter 532:24-28 34. Xue D, Balachandran PV, Hogden J et al (2016) Accelerated search for materials with targeted properties by adaptive design. Nat Commun 7(1):1-9 35. Vahid A, Rana S, Gupta S et al (2018) New bayesian-optimization-based design of high-strength 7xxx-series alloys from recycled aluminum. JOM 70(11):2704-2709 36. Herbol HC, Hu W, Frazier P et al (2018) Efficient search of compositional space for hybrid organic-inorganic perovskites via Bayesian optimization. NPJ Comput Mater 4(1):51. https://doi.org/10.1038/s41524-018-0106-7 37. Herbol HC, Poloczek M, Clancy P et al (2020) Cost-effective materials discovery:Bayesian optimization across multiple information sources. Mater Horiz 7(8):2113-2123 |
| [1] | Shu-Lian Xie, Feng Xue, Wei-Min Zhang, Jia-Wei Zhu, Zi-Wei Jia. Multi-factor integrated configuration model and three-layer hybrid optimization algorithm framework: turnkey project-oriented rapid manufacturing system configuration [J]. Advances in Manufacturing, 2024, 12(4): 698-725. |
| [2] | Yu-Tong Yang, Zhong-Yuan Qiu, Zhen Zheng, Liang-Xi Pu, Ding-Ding Chen, Jiang Zheng, Rui-Jie Zhang, Bo Zhang, Shi-Yao Huang. Al-enabled properties distribution prediction for high-pressure die casting Al-Si alloy [J]. Advances in Manufacturing, 2024, 12(3): 591-602. |
| [3] | Jian Wang, Qiu-Ren Chen, Li Huang, Chen-Di Wei, Chao Tong, Xian-Hui Wang, Qing Liu. A data-driven approach for predicting the fatigue life and failure mode of self-piercing rivet joints [J]. Advances in Manufacturing, 2024, 12(3): 538-555. |
| [4] | Chen-Di Wei, Qiu-Ren Chen, Min Chen, Li Huang, Zhong-Jie Yue, Si-Geng Li, Jian Wang, Li Chen, Chao Tong, Qing Liu. Predicting fatigue life of automotive adhesive bonded joints: a data-driven approach using combined experimental and numerical datasets [J]. Advances in Manufacturing, 2024, 12(3): 522-537. |
| [5] | Qiang-Qiang Zhai, Zhao Liu, Ping Zhu. Understanding microstructure-property relationships of HPDC Al-Si alloy based on machine learning and crystal plasticity simulation [J]. Advances in Manufacturing, 2024, 12(3): 497-511. |
| [6] | Yu-Xiang Ji, Li Huang, Qiu-Ren Chen, Charles K. S. Moy, Jing-Yi Zhang, Xiao-Ya Hu, Jian Wang, Guo-Bi Tan, Qing Liu. A machine learning-based calibration method for strength simulation of self-piercing riveted joints [J]. Advances in Manufacturing, 2024, 12(3): 465-483. |
| [7] | Si-Geng Li, Qiu-Ren Chen, Li Huang, Min Chen, Chen-Di Wei, Zhong-Jie Yue, Ru-Xue Liu, Chao Tong, Qing Liu. Data-driven approach to predict the fatigue properties of ferrous metal materials using the cGAN and machine-learning algorithms [J]. Advances in Manufacturing, 2024, 12(3): 447-464. |
| [8] | Si-Xiao Gao, Hui Liu, Jun Ota. Energy-efficient buffer and service rate allocation in manufacturing systems using hybrid machine learning and evolutionary algorithms [J]. Advances in Manufacturing, 2024, 12(2): 227-251. |
| [9] | Li-Bing Liu, Cong-Hui Hu, Yun-Hu Zhang, Chang-Jiang Song, Qi-Jie Zhai. Melt flow, solidification structures, and defects in 316 L steel strips produced by vertical centrifugal casting [J]. Advances in Manufacturing, 2023, 11(4): 636-646. |
| [10] | Da-Wei Zhang, Wen-Long Gao-Zhang, Qi Zhang. Alternative flexible correction forming of a blade: multipoint correction with surface measurement and deformation simulation [J]. Advances in Manufacturing, 2023, 11(4): 587-600. |
| [11] | Zhi-Jie Jiao, Jun-Yi Luo, Zhi-Qiang Wang, Zhi-Peng Xu, Chun-Yu He, Zhong Zhao. Research and application of the angular rolling technology for plate mill [J]. Advances in Manufacturing, 2023, 11(3): 462-476. |
| [12] | Hao Su, Chuan-Song Wu. Numerical simulation for the comparison of thermal and plastic material flow behavior between symmetrical and asymmetrical boundary conditions during friction stir welding [J]. Advances in Manufacturing, 2023, 11(1): 143-157. |
| [13] | Ling-Bao Kong, Yi Yu. Precision measurement and compensation of kinematic errors for industrial robots using artifact and machine learning [J]. Advances in Manufacturing, 2022, 10(3): 397-410. |
| [14] | Chunling Du, Choon Lim Ho, Jacek Kaminski. Prediction of product roughness, profile, and roundness using machine learning techniques for a hard turning process [J]. Advances in Manufacturing, 2021, 9(2): 206-215. |
| [15] | Zhao-Hui Liu, Zhong-Jie Wang, Chen Yang. Multi-objective resource optimization scheduling based on iterative double auction in cloud manufacturing [J]. Advances in Manufacturing, 2019, 7(4): 374-388. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
Tel: 86-21-66135510
Fax: 86-21-66132736
E-mail: aim@oa.shu.edu.cn