[1] Ding X, Zhou Y, Cheng J et al (2019) A review of gallium nitride power device and its applications in motor drive. Trans Electr Mach Syst 3(1):54-64 [2] Roccaforte F, Greco G, Fiorenza P et al (2019) An overview of normally-off GaN-based high electron mobility transistors. Materials 12:1599. https://doi.org/10.3390/ma12101599 [3] Lu B, Wang Y, Hyun BR et al (2020) Color difference and thermal stability of flexible transparent InGaN/GaN multiple quantum wells mini-LED arrays. IEEE Electron Device Lett 41:1040-1043 [4] Li C, Piao Y, Meng B et al (2022) Phase transition and plastic deformation mechanisms induced by self-rotating grinding of GaN single crystals. Int J Mach Tools Manuf 172:103827. https://doi.org/10.1016/j.ijmachtools.2021.103827 [5] Fu H, Huang X, Chen H et al (2017) Effect of buffer layer design on vertical GaN-on-GaN p-n and schottky power diodes. IEEE Electron Device Lett 38:763-766 [6] Jiang Q, Zhang L, Yang C (2021) Research on material removal mechanism and radial cracks during scribing single crystal gallium nitride. Ceram Int 47:15155-15164 [7] Jiang Q, Zhang L, Yang C (2022) Analysis of crack initiation load and stress field in double scratching of single crystal gallium nitride. Eng Fract Mech 274:108732. https://doi.org/10.1016/j.engfracmech.2022.108732 [8] Chen C, Lai M, Fang F (2021) Subsurface deformation mechanism in nano-cutting of gallium arsenide using molecular dynamics simulation. Nanoscale Res Lett 16:117. https://doi.org/10.1186/s11671-021-03574-3 [9] Wang ZY, Chen ZZ, Zhang XQ (2022) Profile compensation for single-point diamond turning of microlens array. Nanomanuf Metrol 5:403-411 [10] Fang FZ, Wu H, Liu YC (2005) Modelling and experimental investigation on nanometric cutting of monocrystalline silicon. Int J Mach Tools Manuf 45:1681-1686 [11] Fang FZ, Wu H, Zhou W et al (2007) A study on mechanism of nano-cutting single crystal silicon. J Mater Process Technol 184:407-410 [12] Chen X, Xu J, Fang H et al (2017) Influence of cutting parameters on the ductile-brittle transition of single-crystal calcium fluoride during ultra-precision cutting. Int J Adv Manuf Technol 89:219-225 [13] Lai M, Zhang X, Fang F et al (2019) Effects of crystallographic orientation and negative rake angle on the brittle-ductile transition and subsurface deformation in machining of monocrystalline germanium. Precision Eng 56:164-171 [14] Wang J, Fang F (2021) Nanometric cutting mechanism of silicon carbide. CIRP Ann 70:29-32 [15] Wang J, Yan Y, Li Z et al (2021) Towards understanding the machining mechanism of the atomic force microscopy tip-based nanomilling process. Int J Mach Tools Manuf 162:103701. https://doi.org/10.1016/j.ijmachtools.2021.103701 [16] Wang J, Yan Y, Li Z et al (2021) Processing outcomes of atomic force microscope tip-based nanomilling with different trajectories on single-crystal silicon. Precision Eng 72:480-490 [17] Guo J, Qiu C, Zhu H et al (2019) Nanotribological properties of Ga- and N-faced bulk Gallium nitride surfaces determined by nanoscratch experiments. Materials 12:2653. https://doi.org/10.3390/ma12172653 [18] Li C, Piao Y, Meng B et al (2022) Anisotropy dependence of material removal and deformation mechanisms during nanoscratch of gallium nitride single crystals on (0 0 0 1) plane. Appl Surf Sci 578:152028. https://doi.org/10.1016/j.apsusc.2021.152028 [19] Zeng G, Tansu N, Krick BA (2018) Moisture dependent wear mechanisms of gallium nitride. Tribol Int 118:120-127 [20] Bi G, Li Y, Lai M et al (2023) Mechanism of polishing lutetium oxide single crystals with polyhedral diamond abrasive grains based on molecular dynamics simulation. Appl Surf Sci 616:156549. https://doi.org/10.1016/j.apsusc.2023.156549 [21] Sharma A, Kulasegaram S, Brousseau E et al (2023) Investigation of nanoscale scratching on copper with conical tools using particle-based simulation. Nanomanuf Metrol 6:5. https://doi.org/10.1007/s41871-023-00179-5 [22] Fan P, Goel S, Luo X et al (2022) Atomic-scale friction studies on single-crystal gallium arsenide using atomic force microscope and molecular dynamics simulation. Nanomanuf Metrol 5:39-49 [23] Wang J, Fang F, Li L (2022) Cutting of graphite at atomic and close-to-atomic scale using flexible enhanced molecular dynamics. Nanomanuf Metrol 5:240-249 [24] Fang F, Lai M, Wang J et al (2022) Nanometric cutting: mechanisms, practices and future perspectives. Int J Mach Tools Manuf 178:103905. https://doi.org/10.1016/j.ijmachtools.2022.103905 [25] He Y, Lai M, Fang F (2019) A numerical study on nanometric cutting mechanism of lutetium oxide single crystal. Appl Surf Sci 496:143715. https://doi.org/10.1016/j.apsusc.2019.143715 [26] Wang J, Yan Y, Li C (2022) Material removal mechanism and subsurface characteristics of silicon 3D nanomilling. Int J Mech Sci 242:108020. https://doi.org/10.1016/j.ijmecsci.2022.108020 [27] Geng Y, Wang J, Li Z et al (2022) Comparison of the indentation processes using the single indenter and indenter array: a molecular dynamics study. Nanoscale Res Lett 17:49. https://doi.org/10.1186/s11671-022-03686-4 [28] Zhang C, Dong Z, Zhang S et al (2022) The deformation mechanism of gallium-faces and nitrogen-faces gallium nitride during nanogrinding. Int J Mech Sci 214:106888. https://doi.org/10.1016/j.ijmecsci.2021.106888 [29] Huang Y, Wang M, Xu Y et al (2021) Investigation of vibration-assisted nano-grinding of gallium nitride via molecular dynamics. Mater Sci Semicond Process 121:105372. https://doi.org/10.1016/j.mssp.2020.105372 [30] Guo J, Chen J, Wang Y (2020) Temperature effect on mechanical response of c-plane monocrystalline gallium nitride in nanoindentation: a molecular dynamics study. Ceram Int 46:12686-12694 [31] Plimpton S (1995) Fast parallel algorithms for short-range molecular dynamics. J Comput Phys 117:1-19 [32] Thompson AP, Aktulga HM, Berger R et al (2022) LAMMPS─a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales. Comput Phys Commun 271:108171. https://doi.org/10.1016/j.cpc.2021.108171 [33] Stukowski A (2010) Visualization and analysis of atomistic simulation data with OVITO-the open visualization tool. Modelling Simul Mater Sci Eng 18:015012. https://doi.org/10.1088/0965-0393/18/1/015012 [34] Xu Y, Zhu F, Wang M et al (2018) Molecular dynamics simulation of GaN nano-grinding. In:20th electronics packaging technology conference, IEEE, pp 468?472 [35] Nord J, Albe K, Erhart P et al (2003) Modelling of compound semiconductors: analytical bond-order potential for gallium, nitrogen and gallium nitride. J Phys: Condens Matter 15:5649-5662 [36] Béré A, Serra A (2006) On the atomic structures, mobility and interactions of extended defects in GaN: dislocations, tilt and twin boundaries. Philos Mag 86:2159-2192 [37] Mayo SL, Olafson BD, Goddard WA (1990) DREIDING: a generic force field for molecular simulations. J Phys Chem 94:8897-8909 [38] Qian Y, Deng S, Shang F et al (2019) Dependence of tribological behavior of GaN crystal on loading direction: a molecular dynamics study. J Appl Phys 126:075108. https://doi.org/10.1063/1.5093227 [39] Chapuis A, Liu Q et al (2015) Simulations of texture evolution for HCP metals: influence of the main slip systems. Comput Mater Sci 97:121-126 [40] Bacon DJ, Vitek V et al (2002) Atomic-scale modeling of dislocations and related properties in the hexagonal-close-packed metals. Metal Mater Trans A 33:721-733 [41] Liu H, Guo Y, Zhao P et al (2020) Surface generation mechanism of monocrystalline materials under arbitrary crystal orientations in nanoscale cutting. Mater Today Commun 25:101505. https://doi.org/10.1016/j.mtcomm.2020.101505 [42] Zhu Q, Shao JL, Pan H et al (2021) Collapse of stacking fault tetrahedron and dislocation evolution in copper under shock compression. J Nucl Mater 554:153081. https://doi.org/10.1016/j.jnucmat.2021.153081 [43] Li Y, Lai M, Fang F et al (2022) Effects of polishing speed and a water environment on the mechanism of nanometric mechanical polishing of single-crystal lutetium oxide. Mater Today Commun 30:103194. https://doi.org/10.1016/j.mtcomm.2022.103194 [44] Xue ZF, Lai M, Xu FF et al (2022) Molecular dynamics study on surface formation and phase transformation in nanometric cutting of β-Sn. Adv Manuf 10:356-367 [45] Gao S, Lang H, Wang H et al (2023) Atomic understanding of elastic-plastic deformation and crack evolution for single crystal AlN during nanoscratch. Ceram Int 49:35357-35367 [46] Fan Y, Xu Z, Song Y et al (2021) Nano material removal mechanism of 4H-SiC in ion implantation-assisted machining. Comput Mater Sci 200:110837. https://doi.org/10.1016/j.commatsci.2021.110837 [47] Liu B, Xu Z, Wang Y et al (2020) Effect of ion implantation on material removal mechanism of 6H-SiC in nano-cutting: a molecular dynamics study. Comput Mater Sci 174:109476. https://doi.org/10.1016/j.commatsci.2019.109476 [48] Chen X, Liu C, Ke J et al (2020) Subsurface damage and phase transformation in laser-assisted nanometric cutting of single crystal silicon. Mater Des 190:108524. https://doi.org/10.1016/j.matdes.2020.108524 [49] Zhang Y, Jiang S (2018) Atomistic mechanisms for temperature-induced crystallization of amorphous copper based on molecular dynamics simulation. Comput Mater Sci 151:25-33 [50] Zhao Y, Wei X, Zhang Y et al (2016) Crystallization of amorphous materials and deformation mechanism of nanocrystalline materials under cutting loads: a molecular dynamics simulation approach. J Non-Cryst Solids 439:21-29 [51] Mora-Fonz D, Shluger AL et al (2019) Making amorphous ZnO: theoretical predictions of its structure and stability. Phys Rev B 99:014202. https://doi.org/10.1103/PhysRevB.99.014202 [52] Wang J, Zhang X, Fang F et al (2018) A numerical study on the material removal and phase transformation in the nanometric cutting of silicon. Appl Surf Sci 455:608-615 [53] Fang F, Lai M (2017) Crack initiation. In: Laperrière (Ed), CIRP encyclopedia of production engineering, Springer, Berlin Heidelberg, pp 1-7 [54] Wang Z, Chen J, Wang G et al (2017) Anisotropy of single-crystal silicon in nanometric cutting. Nanoscale Res Lett 12:300. https://doi.org/10.1186/s11671-017-2046-4 |