[1] Zhang SJ, To S, Wang SJ et al (2015) A review of surface roughness generation in ultra-precision machining. Int J Mach Tools Manuf 91:76-95 [2] Lamikiz A, López de Lacalle LN, Celaya A (2009) Machine tool performance and precision. In: Lamikiz A (eds), Machine tools for high performance machining, Springer, London, pp 219-260 [3] Yip WS, To S, Zhou H (2021) Current status, challenges and opportunities of sustainable ultra-precision manufacturing. J Intell Manuf 33:2193-2205 [4] Precision engineering machines market report (2028) https://www.grandviewresearch.com/industry-analysis/precision-engineering-machines-market-report. Accessed 12 May 2023 [5] Niazi A, Dai JS, Balabani S et al (2006) Product cost estimation: technique classification and methodology review. J Manuf Sci Eng 128:563-575 [6] Monreal M, Rodriguez CA (2003) Influence of tool path strategy on the cycle time of high-speed milling. Comput Aided Des 35:395-401 [7] Chu HY, Ke D, Jun Y et al (2023) Flexible process planning based on predictive models for machining time and energy consumption. Int J Adv Manuf Technol 128(3/4):1763-1780 [8] Abdul Kadir A, Xu X, H?mmerle E (2011) Virtual machine tools and virtual machining—a technological review. Robotics Comput Integr Manuf 27:494-508 [9] Petrá?ek P, Fojt? P, Kozlok T et al (2022) Effect of CNC interpolator parameter settings on toolpath precision and quality in corner neighborhoods. Appl Sci 12:9496. https://doi.org/10.3390/app12199496 [10] Liu C, Li Y, Wang W et al (2013) A feature-based method for NC machining time estimation. Robotics Comput Integr Manuf 29:8-14 [11] Zhong WB, Luo XC, Chang WL et al (2019) Toolpath interpolation and smoothing for computer numerical control machining of freeform surfaces: a review. Int J Autom Comput 17:1-16 [12] Fan W, Gao XS, Yan W et al (2012) Interpolation of parametric CNC machining path under confined jounce. Int J Adv Manuf Technol 62:719-739 [13] Tajima S, Sencer B (2019) Accurate real-time interpolation of 5-axis tool-paths with local corner smoothing. Int J Mach Tools Manuf 142:1-15 [14] Tajima S, Sencer B (2017) Global tool-path smoothing for CNC machine tools with uninterrupted acceleration. Int J Mach Tools Manuf 121:81-95 [15] Ward R, Sencer B, Jones B et al (2021) Accurate prediction of machining feedrate and cycle times considering interpolator dynamics. Int J Adv Manuf Technol 116:417-438 [16] Altintas Y, Brecher C, Weck M et al (2005) Virtual machine tool. CIRP Ann 54:115-138 [17] Tang PY, Lin MT, Tsai MS et al (2022) Toolpath interpolation with novel corner smoothing technique. Robotics Comput Integr Manuf 78:102388. https://doi.org/10.1016/j.rcim.2022.102388 [18] Oláh J, Aburumman N, Popp J et al (2020) Impact of Industry 4.0 on environmental sustainability. Sustainability 12:4674. https://doi.org/10.3390/su12114674 [19] Tao F, Qi Q, Liu A et al (2018) Data-driven smart manufacturing. J Manuf Syst 48:157-169 [20] Solomatine D, See LM, Abrahart RJ (2008) Data-driven modelling: concepts, approaches and experiences. In: Abrahart RJ, See LM, Solomatine DP (eds) Practical hydroinformatics: computational intelligence and technological developments in water applications, Springer, Berlin, pp 17-30 [21] Altintas Y, Tulsyan S (2015) Prediction of part machining cycle times via virtual CNC. CIRP Ann 64:361-364 [22] Endo M, Sencer B (2022) Accurate prediction of machining cycle times by data-driven modelling of NC system’s interpolation dynamics. CIRP Ann 71:405-408 [23] Sun C, Dominguez-Caballero J, Ward R et al (2022) Machining cycle time prediction: data-driven modelling of machine tool feedrate behavior with neural networks. Robotics Comput Integr Manuf 75:102293. https://doi.org/10.1016/j.rcim.2021.102293 [24] Katal A, Singh N (2022) Artificial neural network: models, applications, and challenges. In: Tomar R, Hina MD, Zitouni R et al (eds) Innovative trends in computational intelligence, Springer International Publishing, Cham, pp 235-257 [25] Choi YK, Banerjee A, Lee JW (2007) Tool path generation for free form surfaces using Bézier curves/surfaces. Comput Ind Eng 52:486-501 [26] Ma Q, Yu H (2023) Artificial intelligence-enabled mode-locked fiber laser: a review. Nanomanuf Metrol 6:36. https://doi.org/10.1007/s41871-023-00216-3 |