1. Ramesh R, Mannan MA, Poo AN (2000) Error compensation in machine tools-a review Part II:thermal errors. Int J Mach Tools Manuf 40(9):1257-1284 2. Mayr J, Jedrzejewski J, Uhlmann E et al (2012) Thermal issues in machine tools. CIRP Annals-Manuf Technol 61(2):771-791 3. Li Y, Zhao W, Lan S et al (2015) A review on spindle thermal error compensation in machine tools. Int J Mach Tools Manuf 95:20-38 4. Liu Y, Ma YX, Meng QY et al (2018) Improved thermal resistance network model of motorized spindle system considering temperature variation of cooling system. Adv Manuf 6:384-400 5. Li SS, Shen Y, He Q (2016) Study of the thermal influence on the dynamic characteristics of the motorized spindle system. Adv Manuf 4(4):355-362 6. Liu K, Liu H, Li T et al (2019) Intelligentization of machine tools:comprehensive thermal error compensation of machineworkpiece system. Int J Adv Manuf Technol 102(9/12):3865-3877 7. Ye WH, Guo YX, Zhou HF et al (2020) Thermal error regression modeling of the real-time deformation coefficient of the moving shaft of a gantry milling machine. Adv Manuf 8:119-132 8. Grama SN, Mathur A, Aralaguppi R et al (2017) Optimization of high speed machine tool spindle to minimize thermal distortion. Procedia CIRP 58:457-462 9. Li B, Tian X, Zhang M (2019) Thermal error modeling of machine tool spindle based on the improved algorithm optimized BP neural network. Int J Adv Manuf Technol 105(9):1497-1505 10. Ni J (1997) CNC machine accuracy enhancement through realtime error compensation. J Manuf Sci Eng 119(4B):717-725 11. Wuest T, Irgens C, Thoben KD (2014) An approach to monitoring quality in manufacturing using supervised machine learning on product state data. J Intell Manuf 25(5):1167-1180 12. Xu J, Guo L, Jiang J et al (2019) A deep learning methodology for automatic extraction and discovery of technical intelligence. Technological Forecasting & Social Change 146:339-351 13. Hochreiter S, Schmidhuber J (1997) Long short-term memory. Neural Computation 9(8):1735-1780 14. Wei J, Liao J, Yang Z et al (2020) BiLSTM with multi-polarity orthogonal attention for implicit sentiment analysis. Neurocomputing 383(28):165-173 15. Putz M, Regel J, Wenzel A et al (2019) Thermal errors in milling:comparison of displacements of the machine tool, tool and workpiece. Procedia CIRP 82:389-394 16. Kim HS, Eykholt R, Salas JD (1999) Nonlinear dynamics, delay times, and embedding windows. Physica D:Nonlinear Phenomena 127(1/2):48-60 17. Li Z, Yang J, Fan K et al (2015) Integrated geometric and thermal error modeling and compensation for vertical machining centers. Int J Adv Manuf Technol 76(5/8):1139-1150 |