Advances in Manufacturing ›› 2023, Vol. 11 ›› Issue (2): 222-247.doi: 10.1007/s40436-022-00418-w
• ARTICLES • Previous Articles Next Articles
Lorcan O'Toole1, Feng-Zhou Fang1,2
Received:2022-02-10
Revised:2022-05-24
Online:2023-06-25
Published:2023-05-20
Contact:
Feng-Zhou Fang,E-mail:fengzhou.fang@ucd.ie
E-mail:fengzhou.fang@ucd.ie
Supported by:Lorcan O'Toole, Feng-Zhou Fang. Optimal tool design in micro-milling of difficult-to-machine materials[J]. Advances in Manufacturing, 2023, 11(2): 222-247.
| 1. Koo JY, Kim JS, Kim PH (2014) Machining characteristics of micro-flow channels in micro-milling process. Mach Sci Technol 18(4):509–521 2. Vázquez E, Rodríguez CA, Elías-Zú?iga A et al (2010) An experimental analysis of process parameters to manufacture metallic micro-channels by micro-milling. Int J Adv Manuf Technol 51(9/12):945–955 3. Bodziak S, de Souza AF, Rodrigues AR et al (2013) Surface integrity of moulds for microcomponents manufactured by micromilling and electro-discharge machining. J Braz Soc Mech Sci Eng 36:632–635 4. Chen L, Deng D, Pi G et al (2020) Burr formation and surface roughness characteristics in micro-milling of microchannels. Int J Adv Manuf Technol 111(5):1277–1290 5. Fang FZ, Liu K, Kurfess TR et al (2006) Tool-based micro machining and applications in MEMS. In: MEMS/NEMS. Springer, pp 678–740 6. Guckenberger DJ, de Groot TE, Wan AMD et al (2015) Micromilling: a method for ultra-rapid prototyping of plastic microfluidic devices. Lab Chip 15(11):2364–2378 7. Chen W, Zheng L, Huo D et al (2018) Surface texture formation by non-resonant vibration assisted micro milling. J Micromech Microeng 28(2):025006. https://doi.org/10.1088/1361-6439/aaa06f 8. Chen L, Liu Z, Li Y et al (2018) Effects of micro-milled malposed dimple structures on tribological behavior of Al-Si alloy under droplet lubricant condition. Int J Adv Manuf Technol 98(1/4):143–150 9. Maboudian R, Howe RT (1997) Critical review: adhesion in surface micromechanical structures. J Vac Sci Technol B 15(1):1–20 10. O’Toole L, Kang CW, Fang FZ (2021) Precision micro-milling process: state of the art. Adv Manuf 9(2):173–205 11. O’Toole L, Kang C, Fang FZ (2019) Advances in rotary ultrasonic-assisted machining. Nanomanuf Metrol 3:1–25 12. Cheng X, Wang Z, Nakamoto K et al (2011) A study on the micro tooling for micro/nano milling. Int J Adv Manuf Technol 53(5/8):523–533 13. Fang FZ, Wu H, Liu X et al (2003) Tool geometry study in micromachining. J Micromech Microeng 13(5):726–731 14. Fleischer J, Deuchert M, Ruhs C et al (2008) Design and manufacturing of micro milling tools. Microsyst Technol 14(9/11):1771–1775 15. Shi Z, Liu Z, Li Y et al (2017) Swept mechanism of micro-milling tool geometry effect on machined oxygen free high conductivity copper (OFHC) surface roughness. Materials 10(2):120. https://doi.org/10.3390/ma10020120 16. Cheng X, Wang Z, Nakamoto K et al (2010) Design and development of PCD micro straight edge end mills for micro/nano machining of hard and brittle materials. J Mech Sci Technol 24(11):2261–2268 17. Li P, Oosterling JAJ, Hoogstrate AM et al (2011) Design of micro square endmills for hard milling applications. Int J Adv Manuf Technol 57:859–870 18. Wu T, Cheng K, Rakowski R (2012) Investigation on tooling geometrical effects of micro tools and the associated micro milling performance. Proc Inst Mech Eng B J Eng Manuf 226(9):1442–1453 19. Kirsch B, Bohley M, Arrabiyeh PA et al (2017) Application of ultra-small micro grinding and micro milling tools: possibilities and limitations. Micromachines 8(9):261. https://doi.org/10.3390/mi8090261 20. Zhan Z, Li L, He N et al (2014) Design and manufacturing of ultra-hard micro-milling tool. Trans Tianjin Univ 20(6):415–421 21. Aramcharoen A, Mativenga PT (2009) Size effect and tool geometry in micromilling of tool steel. Precis Eng 33(4):402–407 22. Saptaji K, Subbiah S (2017) Burr reduction of micro-milled microfluidic channels mould using a Tapered tool. Procedia Eng 184:137–144 23. Ohnishi O, Onikura H, Min SK et al (2007) Characteristics of grooving by micro end mills with various tool shapes and approach to their optimal shape. Memoirs of the Faculty of Engineering, Kyushu University, 67:143–151 24. Lu X, Jia Z, Wang F et al (2018) Model of the instantaneous undeformed chip thickness in micro-milling based on tooth trajectory. Proc Inst Mech Eng B J Eng Manuf 232(2):226–239 25. Liu X, DeVor RE, Kapoor SG (2006) An analytical model for the prediction of minimum chip thickness in micromachining. J Manuf Sci Eng 128(2):474–481 26. Solid (continuum) elements. https://abaqus-docs.mit.edu/2017/English/SIMACAEELMRefMap/simaelm-c-solidcont.htm. Accessed 19 Nov 2021 27. Chen CH, Wang YC, Lee BY (2013) The optimal design of micro end mill for milling SKD61 tool steel. Int J Adv Manuf Technol 68(1/4):165–173 28. Petrò S, Moroni G (2020) 3D identification of face and flank in micro-mills for automatic measurement of rake angle. Nanomanuf Metrol 3(2):151–163 29. Weule H, Hüntrup V, Tritschler H (2001) Micro-cutting of steel to meet new requirements in miniaturization. CIRP Ann 50(1):61–64 30. Boyer R, Welsch G, Collings E (1994) Materials properties handbook: titanium alloys. ASM International, Materials Park, OH 31. Manuela-Roxana D, Dijm?rescu M, Voiculescu I et al (2018) Study on the influence of cutting parameters on surface quality when machining a CoCrMo alloy. In: IOP conference series: materials science and engineering. 400(2):022020. https://doi.org/10.1088/1757-899X/400/2/022020 |
| [1] | Lin Gu, Ke-Lin Li, Xiao-Ka Wang, Guo-Jian He. The effect of the slope angle and the magnetic field on the surface quality of nickel-based superalloys in blasting erosion arc machining [J]. Advances in Manufacturing, 2025, 13(3): 620-633. |
| [2] | Jia-Hao Liu, Dong-Zhou Jia, Chang-He Li, Yan-Bin Zhang, Ying Fu, Zhen-Lin Lv, Shuo Feng. Mechanism and machinability in novel electroplastic-assisted grinding ductile iron [J]. Advances in Manufacturing, 2025, 13(1): 245-263. |
| [3] | Xin Wang, Qing-Liao He, Biao Zhao, Wen-Feng Ding, Qi Liu, Dong-Dong Xu. Effects of tool coating and tool wear on the surface and chip morphology in side milling of Ti2AlNb intermetallic alloys [J]. Advances in Manufacturing, 2025, 13(1): 155-166. |
| [4] | Zhen-Jing Duan, Shuai-Shuai Wang, Shu-Yan Shi, Ji-Yu Liu, Yu-Heng Li, Zi-Heng Wang, Chang-He Li, Yu-Yang Zhou, Jin-Long Song, Xin Liu. Surface quality evaluation of cold plasma and NMQL multi-field coupling eco-friendly micro-milling 7075-T6 aluminum alloy [J]. Advances in Manufacturing, 2025, 13(1): 69-87. |
| [5] | Ming-Ming Lu, Ya-Kun Yang, Jie-Qiong Lin, Yong-Sheng Du, Xiao-Qin Zhou. Research progress of magnetorheological polishing technology: a review [J]. Advances in Manufacturing, 2024, 12(4): 642-678. |
| [6] | Qiang Gao, Ya-Ou Zhang, Xue-Cheng Xi, Yuan-Ding Wang, Xiao-Fei Chen, Wan-Sheng Zhao. Research on feed-pulse collaborative control method in micro-electrical discharge machining [J]. Advances in Manufacturing, 2024, 12(2): 270-287. |
| [7] | Long-Hua Xu, Chuan-Zhen Huang, Zhen Wang, Han-Lian Liu, Shui-Quan Huang, Jun Wang. Novel intelligent reasoning system for tool wear prediction and parameter optimization in intelligent milling [J]. Advances in Manufacturing, 2024, 12(1): 76-93. |
| [8] | Cheng Tang, Zhao Han, Zhong-Qi Zhou, Xiao-Long Fang. Precision wire electrochemical machining of thick structures in powder superalloy René 88DT using a partially insulated tube electrode [J]. Advances in Manufacturing, 2023, 11(4): 618-635. |
| [9] | Jiang Guo, Xing-Yu Wang, Yong Zhao, Chen-Yi Hou, Xu Zhu, Yin-Di Cai, Zhu-Ji Jin, Ren-Ke Kang. On-machine measurement of tool nose radius and wear during precision/ultra-precision machining [J]. Advances in Manufacturing, 2022, 10(3): 368-381. |
| [10] | Lorcan O'Toole, Cheng-Wei Kang, Feng-Zhou Fang. Precision micro-milling process: state of the art [J]. Advances in Manufacturing, 2021, 9(2): 173-205. |
| [11] | Xiao-Fen Liu, Wen-Hu Wang, Rui-Song Jiang, Yi-Feng Xiong, Kun-Yang Lin. Tool wear mechanisms in axial ultrasonic vibration assisted milling in-situ TiB2/7050Al metal matrix composites [J]. Advances in Manufacturing, 2020, 8(2): 252-264. |
| [12] | Wei Zhao, Asif Iqbal, Ding Fang, Ning He, Qi Yang. Experimental study on the meso-scale milling of tungsten carbide WC-17.5Co with PCD end mills [J]. Advances in Manufacturing, 2020, 8(2): 230-241. |
| [13] | Ben-Kai Li, Qing Miao, Min Li, Xi Zhang, Wen-Feng Ding. An investigation on machined surface quality and tool wear during creep feed grinding of powder metallurgy nickel-based superalloy FGH96 with alumina abrasive wheels [J]. Advances in Manufacturing, 2020, 8(2): 160-176. |
| [14] | Szymon Wojciechowski, Zbigniew Nowakowski, Radomir Majchrowski, Grzegorz Królczyk. Surface texture formation in precision machining of direct laser deposited tungsten carbide [J]. Advances in Manufacturing, 2017, 5(3): 251-260. |
| [15] | M. S. Uddin, Binh Pham, Ahmed Sarhan, Animesh Basak, Alokesh Pramanik. Comparative study between wear of uncoated and TiAlN-coated carbide tools in milling of Ti6Al4V [J]. Advances in Manufacturing, 2017, 5(1): 83-91. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
Tel: 86-21-66135510
Fax: 86-21-66132736
E-mail: aim@oa.shu.edu.cn