1. Chinchanikar S, Choudhary SK (2015) Machining of hardened steel-experimental-experimental investigations, performance modeling and cooling technique:a review. Int J Mach Tools Manuf 89:95-109 2. Gaitonde VN, Karnik SR, Figueira L et al (2009) Machinability investigations in hard turning of AISI D2 cold work tool steel with conventional and wiper ceramic inserts. Int J Refract Met Hard Mater 27:754-763 3. Das SR, Dhupal D, Kumar A (2015) Experimental investigation into machinability of hardened AISI 4140 steel using TiN coated ceramic tool. Measurement 62:108-126 4. Bouacha K, Yallese MA, Mabrouki T et al (2010) Statistical analysis of surface roughness and cutting forces using response surface methodology in hard turning of AISI 52100 bearing steel with CBN tool. Int J Refract Met Hard Mater 28:349-361 5. Suresh R, Basavarajappa S, Gaitonde VN et al (2012) Machinability investigations on hardened AISI 4340 steel using coated carbide insert. Int J Refract Met Hard Mater 33:75-86 6. Davim JP, Figueira L (2007) Machinability evaluation in hard turning of cold work tool steel (D2) with ceramic tools using statistical techniques. Mater Des 28:1186-1191 7. Davim JP, Figueira L (2007) Comparative evaluation of conventional and wiper ceramic tools on cutting forces, surface roughness, and tool wear in hard turning AISI D2 steel. Proc Inst Mech Eng B:J Eng Manuf 221(4):625-633 8. Lima JG, Á vila RF, Abrão AM et al (2005) Hard turning:AISI 4340 high strength low alloy steel and AISI D2 cold work tool steel. J Mater Process Technol 169:388-395 9. Madić M, Radovanović M (2013) Modeling and analysis of correlations between cutting parameters and cutting force components in turning AISI 1043 steel using. J Braz Soc Mech Sci Eng 35:111-121 10. Mandal N, Doloi B, Mondal B et al (2011) Optimization of flank wear using zirconia toughened alumina (ZTA) cutting tool:Taguchi method and regression analysis. Measurement 44:2149-2155 11. Aouici H, Yallese MA, Chaoui K et al (2012) Analysis of surface roughness and cutting force components in hard turning with CBN tool:prediction model and cutting conditions optimization. Measurement 45:344-353 12. Suresh R, Basavarajappa S, Samuel GL (2012) Some studies on hard turning of AISI 4340 steel using multilayer coated carbide tool. Measurement 45:1872-1884 13. Sahoo AK, Sahoo B (2013) Performance studies of multilayer hard surface coatings (TiN/TiCN/Al2O3/TiN) of indexable carbide inserts in hard machining:Part-Ⅱ (RSM, grey relational and techno economical approach). Measurement 46:2868-2884 14. Makadia AJ, Nanavati JI (2013) Optimisation of machining parameters for turning operations based on response surface methodology. Measurement 46(4):1521-1529 15. Chinchanikar S, Choudhary SK (2013) Effect of work material hardness and cutting parameters on performance of coated carbide tool when turning hardened steel:an optimization approach. Measurement 46:1572-1584 16. Selvaraj DP, Chandramohan P, Mohanraj M (2014) Optimization of surface roughness, cutting force and tool wear of nitrogen alloyed duplex stainless steel in a dry turning process using Taguchi method. Measurement 49(11):205-215 17. Mandal N, Doloi B, Mondal B (2013) Predictive modeling of surface roughness in high speed machining of AISI 4340 steel using yttria stabilized zirconia toughened alumina turning insert. Int J Refract Met Hard Mater 38:40-46 18. Chinchanikar S, Choudhary SK (2013) Investigations on machinability aspects of hardened AISI 4340 steel at different levels of hardness using coated carbide tools. Int J Refract Met Hard Mater 38:124-133 19. Sahin Y, Motorcu AR (2008) Surface roughness model in machining hardened steel with cubic boron nitride cutting tool. Int J Refract Met Hard Mater 26:84-90 20. Agrawal A, Goel S, Rashid WB et al (2015) Prediction of surface roughness during hard turning of AISI 4340 steel (69 HRC). Appl Soft Comput 30:279-286 21. Aouici H, Yallese MA, Fnides B et al (2011) Modeling and optimization of hard turning of X38CrMoV5-1 steel with CBN tool:machining parameters effects on flank wear and surface roughness. J Mech Sci Technol 25(11):2843-2851 22. Gopalsamy BM, Mondal B, Ghosh S (2009) Optimisation of machining parameters for hard machining:grey relational theory approach and ANOVA. Int J Adv Manuf Technol 45:1068-1086 23. Asiltürk I, Akkuş H (2011) Determining the effect of cutting parameters on surface roughness in hard turning using the Taguchi method. Measurement 44:1697-1704 24. Bartarya G, Choudhury SK (2014) Influence of machining parameters on forces and surface roughness during finish hard turning of EN 31 steel. Proc Inst Mech Eng B J Eng Manuf 228(9):1068-1080 25. Bouacha K, Yallese MA, Khamel S et al (2014) Analysis and optimization of hard turning operation using cubic boron nitride tool. Int J Refract Met Hard Mater 45:160-178 26. Günay M, Yücel E (2013) Application of Taguchi method for determining optimum surface roughness in turning of high-alloy white cast iron. Measurement 46:913-919 27. Khamel S, Ouelaa N, Bouacha K (2012) Analysis and prediction of tool wear, surface roughness and cutting forces in hard turning with CBN tool. J Mech Sci Technol 26(11):3605-3616 28. Ahilan C, Kumanan S, Sivakumaran N et al (2013) Modeling and prediction of machining quality in CNC turning process using intelligent hybrid decision making tools. Appl Soft Comput 13(3):1543-1551 29. Sahin Y (2009) Comparison of tool life between ceramic and cubic boron, nitride (CBN) cutting tools when machining hardened steels. J Mater Process Technol 209(7):3478-3489 30. Kumar P, Chauhan SR (2015) Machinability study on finish turning of AISI H13 hot working die tool steel with cubic boron nitride (CBN) cutting tool inserts using response surface methodology (RSM). Arab J Sci Eng 40:1471-1485 31. Das A, Mukhopadhyay A, Patel SK et al (2016) Comparative assessment of machinability aspects of AISI 4340 alloy steel using uncoated carbide and coated cermet inserts during hard turning. Arab J Sci Eng 41:4531-4552 32. Kamruzzaman M, Rahman SS, Ashraf MZI, Dhar NR (2017) Modeling of chip-tool interface temperature using response surface methodology and artificial neural network in HPC-assisted turning and tool life investigation. Int J Adv Manuf Technol 90(5-8):1547-1568 33. Sahoo AK, Mishra PC (2014) A response surface methodology and desirability approach for predictive modeling and optimization of cutting temperature in machining hardened steel. Int J Ind Eng Comput 5(3):407-416 34. Montgomery DC (1997) Design and analysis of experiments, 4th edn. Wiley, New York 35. Süleyman N, Süleyman Y, Erol T (2011) Optimization of tool geometry parameters for turning operations based on the response surface methodology. Measurement 44:580-587 36. Sahoo P, Barman TK, Routra BC (2008) Fractal dimension modelling of surface profile and optimisation in CNC end milling using response surface method. Int J Manuf Res 3:360-377 37. More AS, Jiang W, Brown WD et al (2006) Tool wear and machining performance of CBN-TiN coated carbide inserts and PCBN compact inserts in turning AISI 4340 hardened steel. J Mater Process Technol 180:253-262 |