Advances in Manufacturing ›› 2022, Vol. 10 ›› Issue (3): 397-410.doi: 10.1007/s40436-022-00400-6
• ARTICLES • Previous Articles Next Articles
Ling-Bao Kong1, Yi Yu1
Received:2021-07-27
Revised:2022-01-24
Online:2022-09-25
Published:2022-09-08
Supported by:Ling-Bao Kong, Yi Yu. Precision measurement and compensation of kinematic errors for industrial robots using artifact and machine learning[J]. Advances in Manufacturing, 2022, 10(3): 397-410.
| 1. Besset P, Olabi A, Gibaru O (2016) Advanced calibration applied to a collaborative robot. In:2016 IEEE international power electronics and motion control conference (PEMC), Varna, pp 662-667 2. Denavit J, Hartenberg RS (1955) A kinematic notation for lowerpair mechanisms based on matrix. J Appl Mech 22:215-221 3. Hayati S, Mirmirani M (1985) Improving the absolute positioning accuracy of robot manipulators. J Robotic Syst 2(4):397-413 4. Joubair A, Bonev IA (2015) Kinematic calibration of a six-axis serial robot using distance and sphere constraints. Int J Adv Manuf Technol 77(1/4):515-523 5. Stone H, Sanderson A, Neuman C (1986) Arm signature identification. In:Proceedings of IEEE international conference on robotics and automation, 7-10 April, San Francisco, pp 41-48. https://doi.org/10.1109/ROBOT.1986.1087664 6. Zhuang H, Roth ZS, Hamano F (1992) A complete and parametrically continuous kinematic model for robot manipulators. IEEE Trans Robot Autom 8(4):451-463 7. Chen IM, Yang GL, Tan CT et al (2001) Local POE model for robot kinematic calibration. Mech Mach Theory 36(11/12):1215-1239 8. Yang X, Wu L, Li J et al (2014) A minimal kinematic model for serial robot calibration using POE formula. Robot Comput Integr Manuf 30(3):326-334 9. Nubiola A, Bonev IA (2014) Absolute robot calibration with a single telescoping ballbar. Precis Eng 38(3):472-480 10. Marwan A, Simic M, Imad F (2017) Calibration method for articulated industrial robots. Procedia Comput Sci 112:1601-1610 11. Nubiola A, Bonev IA (2013) Absolute calibration of an ABB IRB 1600 robot using a laser tracker. Robot Comput Integr Manuf 29(1):236-245 12. Du GL, Zhang P, Li D (2015) Online robot calibration based on hybrid sensors using Kalman filters. Robot Comput Integr Manuf 31:91-100 13. Nissler C, Marton ZC (2017) Robot-to-camera calibration:a generic approach using 6D detections. In:The 1st IEEE international conference on robotic computing (IRC), 10-12 April, Taichung, pp 299-302. https://doi.org/10.1109/IRC.2017.66 14. Joubair A, Zhao LF, Bigras P et al (2015) Absolute accuracy analysis and improvement of a hybrid 6-DOF medical robot. Industrial Robot 42(1):44-53. https://doi.org/10.1108/IR-09-2014-0396 15. Shibuya Y, Maru N (2009) Control of 6 DOF arm of the humanoid robot by linear visual servoing. In:2009 IEEE international symposium on industrial electronics, Seoul, pp 1791-1796. https://doi.org/10.1109/ISIE.2009.5218128 16. Ma G, Wang F, Qu Z et al (2006) A feasible vision-based measurement method for robot orientation error. In:The 1st international symposium on systems and control in aerospace and astronautics, Harbin, 19-21 January, pp 1214-1217 17. Motta JMST, McMaster RS (2002) Experimental validation of a 3-D vision-based measurement system applied to robot calibration. J Braz Soc Mech Sci 24(3). https://doi.org/10.1590/S0100-73862002000300011 18. Miseikis J, Glette K, Elle OJ et al (2016) Automatic calibration of a robot manipulator and multi 3D camera system. In:IEEE/SICE international symposium on system integration (SII), Sapporo, pp 735-741. https://doi.org/10.1109/SII.2016.7844087 19. Oriolo G, Paolillo A, Rosa L et al (2016) Humanoid odometric localization integrating kinematic, inertial and visual information. Auton Robots 40(5):867-879 20. Monica T, Giovanni L, PierLuigi M et al (2003) A closed-loop neuro-parametric methodology for the calibration of a 5 DOF measuring robot. In:Proceedings of IEEE international symposium on computational intelligence in robotics and automation, pp 1482-1487. https://doi.org/10.1109/CIRA.2003.1222216 21. Liu J, Zhang Y, Li Z (2007) Improving the Positioning Accuracy of a neurosurgical robot system. IEEE/ASME Trans Mechatron 12(5):527-533. https://doi.org/10.1109/TMECH.2007.905694 22. Aoyagi S, Kohama A, Nakata Y et al (2010) Improvement of robot accuracy by calibrating kinematic model using a laser tracking system-compensation of non-geometric errors using neural networks and selection of optimal measuring points usinggenetic algorithm. In:IEEE/RSJ international conference on intelligent robots and systems, 18-22 October, Taipei, pp 5660-5665. https://doi.org/10.1109/IROS.2010.5652953 23. Messay T, Chen C, Ordoñez R et al (2011) GPGPU acceleration of a novel calibration method for industrial robots. In:Proceedings of the IEEE national aerospace and electronics conference (NAECON), 20-22 July, Dayton, pp 124-129 24. Nguyen HN, Zhou J, Kang HJ (2015) A calibration method for enhancing robot accuracy through integration of an extended Kalman filter algorithm and an artificial neural network. Neurocomputing 151(3):996-1005 25. Yuan P, Chen D, Wang T et al (2018) A compensation method based on extreme learning machine to enhance absolute position accuracy for aviation drilling robot. Adv Mech Eng 10(3):1687814018763411. https://doi.org/10.1177/1687814018763411 26. Chen DD, Wang TM, Yuan PJ et al (2019) A positional error compensation method for industrial robots combining error similarity and radial basis function neural network. Meas Sci Technol 30(12):125010 27. Nguyen HN, Zhou J, Kang HJ (2015) A calibration method for enhancing robot accuracy through integration of an extended Kalman filter algorithm and an artificial neural network. Neurocomputing 151:996-1005 28. Leica (2021) Laser tracker systems. https://leica-geosystems.com/products/laser-tracker-systems. Accessed 8 Dec 2021 29. Faro (2021) Vantage laser trackers. https://www.faro.com/zh-CN/Products/Hardware/Vantage-Laser-Trackers. Accessed 8 Dec 2021 30. API (2021) Radian laser trackers. https://apimetrology.com/radian/. Accessed 8 Dec 2021 31. Luo Z, Sturm J (2000) Error analysis. Handb Semidefinite Program 27:163-189. https://doi.org/10.1007/978-1-4615-4381-7_7 32. Tang HY, He ZY, Ma YX et al (2017) A step identification method for kinematic calibration of a 6-DOF serial robot. Mech Mach Sci 408:1009-1020 33. He KM, Zhang XY, Ren SQ et al (2016) Deep residual learning for image recognition. In:IEEE conference on computer vision and pattern recognition (CVPR), Las Vegas, pp 770-778. https://doi.org/10.1109/CVPR.2016.90 34. Lecun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521(7553):436-444 35. Huang G, Liu Z, Maaten LV et al (2016) Densely connected convolutional networks. In:Proceeding of the conference on computer vision and pattern recognition (CVPR), 21-26 July, Honolulu, pp 4700-4708 |
| [1] | Yu-Tong Yang, Zhong-Yuan Qiu, Zhen Zheng, Liang-Xi Pu, Ding-Ding Chen, Jiang Zheng, Rui-Jie Zhang, Bo Zhang, Shi-Yao Huang. Al-enabled properties distribution prediction for high-pressure die casting Al-Si alloy [J]. Advances in Manufacturing, 2024, 12(3): 591-602. |
| [2] | Jian Wang, Qiu-Ren Chen, Li Huang, Chen-Di Wei, Chao Tong, Xian-Hui Wang, Qing Liu. A data-driven approach for predicting the fatigue life and failure mode of self-piercing rivet joints [J]. Advances in Manufacturing, 2024, 12(3): 538-555. |
| [3] | Chen-Di Wei, Qiu-Ren Chen, Min Chen, Li Huang, Zhong-Jie Yue, Si-Geng Li, Jian Wang, Li Chen, Chao Tong, Qing Liu. Predicting fatigue life of automotive adhesive bonded joints: a data-driven approach using combined experimental and numerical datasets [J]. Advances in Manufacturing, 2024, 12(3): 522-537. |
| [4] | Qiang-Qiang Zhai, Zhao Liu, Ping Zhu. Understanding microstructure-property relationships of HPDC Al-Si alloy based on machine learning and crystal plasticity simulation [J]. Advances in Manufacturing, 2024, 12(3): 497-511. |
| [5] | Yu-Xiang Ji, Li Huang, Qiu-Ren Chen, Charles K. S. Moy, Jing-Yi Zhang, Xiao-Ya Hu, Jian Wang, Guo-Bi Tan, Qing Liu. A machine learning-based calibration method for strength simulation of self-piercing riveted joints [J]. Advances in Manufacturing, 2024, 12(3): 465-483. |
| [6] | Si-Geng Li, Qiu-Ren Chen, Li Huang, Min Chen, Chen-Di Wei, Zhong-Jie Yue, Ru-Xue Liu, Chao Tong, Qing Liu. Data-driven approach to predict the fatigue properties of ferrous metal materials using the cGAN and machine-learning algorithms [J]. Advances in Manufacturing, 2024, 12(3): 447-464. |
| [7] | Jing Dai, Song-Zhe Xu, Chao-Yue Chen, Tao Hu, San-San Shuai, Wei-Dong Xuan, Jiang Wang, Zhong-Ming Ren. A multi-objective optimization based on machine learning for dimension precision of wax pattern in turbine blade manufacturing [J]. Advances in Manufacturing, 2024, 12(3): 428-446. |
| [8] | Si-Xiao Gao, Hui Liu, Jun Ota. Energy-efficient buffer and service rate allocation in manufacturing systems using hybrid machine learning and evolutionary algorithms [J]. Advances in Manufacturing, 2024, 12(2): 227-251. |
| [9] | Qi Zhong, Xiao-Yong Tian, Xiao-Kang Huang, Zhi-Qiang Tong, Yi Cao, Di-Chen Li. High-accuracy calibration for multi-laser powder bed fusion via in situ detection and parameter identification [J]. Advances in Manufacturing, 2022, 10(4): 556-570. |
| [10] | Chunling Du, Choon Lim Ho, Jacek Kaminski. Prediction of product roughness, profile, and roundness using machine learning techniques for a hard turning process [J]. Advances in Manufacturing, 2021, 9(2): 206-215. |
| [11] | He Lyu, Yue Liu, Jiao-Yang Guo, He-Ming Zhang, Ze-Xiang Li. Tool-path generation for industrial robotic surface-based application [J]. Advances in Manufacturing, 2019, 7(1): 64-72. |
| [12] | Shuai Guo, Ting-Ting Fang, Tao Song, Feng-Feng Xi, Bang-Guo Wei. Tracking and localization for omni-directional mobile industrial robot using reflectors [J]. Advances in Manufacturing, 2018, 6(1): 118-125. |
| [13] | V. B. Saputra,S. K. Ong,A. Y. C. Nee. Optimum calibration of a parallel kinematic manipulator using digital indicators [J]. Advances in Manufacturing, 2014, 2(3): 222-230. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
Tel: 86-21-66135510
Fax: 86-21-66132736
E-mail: aim@oa.shu.edu.cn