1. Trauzettel B, Bulaev DV, Loss D et al (2007) Spin qubits in graphene quantum dots. Nat Phys 3:192-196
2. Zhu S, Zhang J, Qiao C et al (2011) Strongly green-photoluminescent graphene quantum dots for bioimaging applications. Chem Commun 47:6858-6860
3. Pradhan A, Holloway T, Mundle R et al (2012) Energy harvesting in semiconductor-insulator-semiconductor junctions through excitation of surface plasmon polaritons. Appl Phys Lett100:061127
4. Park K, Lee M, Liu Y et al (2012) Flexible nanocomposite generator made of BaTiO3 nanoparticles and graphitic carbons. Adv Mater 24:2999-3004
5. Gittins DI, Bethell D, Schiffrin DJ et al (2000) A nanometrescale electronic switch consisting of a metal cluster and redoxaddressable groups. Nature 408:67-69
6. Huang Y, Duan X, Lieber CM (2005) Nanowires for integrated multicolor nanophotonics. Small 1:142-147
7. Brongersma ML, Kik PG (2007) Surface plasmon nanophotonics. Springer, Netherlands
8. Wolf SA, Lu J, Stan MR et al (2010) The promise of nanomagnetics and spintronics for future logic and universal memory. Proc IEEE 98:2155-2168
9. Awschalom DD, Flatté ME (2007) Challenges for semiconductor spintronics. Nat Phys 3:153-159
10. Wolf S, Awschalom D, Buhrman R et al (2001) Spintronics: a spin-based electronics vision for the future. Science294:1488-1495
11. Mourachkine A, Yazyev O, Ducati C et al (2008) Template nanowires for spintronics applications: nanomagnet microwave resonators functioning in zero applied magnetic field. Nano Lett8:3683-3687
12. Ohtsu M, Kobayashi K, Kawazoe T et al (2002) Nanophotonics: design, fabrication, and operation of nanometric devices using optical near fields. IEEE J Sel Top Quantum Electron 8:839-862
13. Qian F, Li Y, Gradecak S et al (2004) Gallium nitride-based nanowire radial heterostructures for nanophotonics. Nano Lett4(10):1975-1979
14. Zutic I, Fabian J, Sarma SD (2004) Spintronics: fundamentals and applications. Rev Mod Phys 76:323
15. Ling X, Zhou X, Shu W et al (2013) Realization of tunable photonic spin hall effect by tailoring the Pancharatnam-Berry phase. Sci Rep 5:5557
16. Thibeault SA, Kang JH, Sauti G et al (2015) Nanomaterials for radiation shielding. MRS Bull 40:836-841
17. Xu X, Yao W, Xiao D et al (2014) Spin and pseudospins in layered transition metal dichalcogenides. Nat Phys 10:343-350
18. McAlister S (1978) The hall effect in spin glasses. J Appl Phys49:1616-1621
19. Senthil T, Marston J, Fisher MP (1999) Spin quantum hall effect in unconventional superconductors. Phys Rev B 60(6):4245-4254
20. Hirsch JE (1999) Spin hall effect. Phys Rev Lett 83(9):1834-1837
21. Dyakonov M, Perel V (1971) Possibility of orienting electron spins with current. Sov J Exp Theor Phys Lett 13:467-469
22. Girvin SM (1999) The quantum hall effect: novel excitations and broken symmetries. In: Comtet A, Jolicoeur T, Ouvry S et al (eds) Topological aspects of low dimensional systems. Springer, Berlin, pp 53-175
23. Laughlin RB (1983) Anomalous quantum hall effect: an incompressible quantum fluid with fractionally charged excitations. Phys Rev Lett 50:1395-1398
24. Burr GW, Kurdi BN, Scott JC et al (2008) Overview of candidate device technologies for storage-class memory. IBM J Res Dev 52:449-464
25. Wang KL, Alzate JG, Amiri PK (2013) Low-power non-volatile spintronic memory: STT-RAM and beyond. J Phys Appl Phys 46(7):074003
26. Wang X, Keshtbod P, Wang Z et al (2015) Spin-orbitronics memory device with matching and self-reference functionality. IEEE Trans Magn 51:1-4
27. Jiang Z, Zhang Y, Tan YW et al (2007) Quantum hall effect in graphene. Solid State Commun 143(1-2):14-19
28. Zibouche N, Philipsen P, Kuc A et al (2014) Transition-metal dichalcogenide bilayers: switching materials for spintronic and valleytronic applications. Phys Rev B 90:125440
29. Chua C, Connolly M, Lartsev A et al (2014) Quantum hall effect and quantum point contact in bilayer-patched epitaxial graphene. Nano Lett 14:3369-3373
30. Klitzing KV (1995) Physics and application of the quantum hall effect. Phys B Condens Matter 204(1-4):111-116
31. Kirchain R, Kimerling L (2007) A roadmap for nanophotonics. Nat Photonics 1:303-305
32. Cortes C, Newman W, Molesky S et al (2012) Quantum nanophotonics using hyperbolic metamaterials. J Opt 14(6):063001
33. Shen Y, Friend CS, Jiang Y et al (2000) Nanophotonics: interactions, materials, and applications. J Phys Chem B 104:7577-7587
34. Callahan DM, Munday JN, Atwater HA (2012) Solar cell light trapping beyond the ray optic limit. Nano Lett 12:214-218
35. Yu Z, Raman A, Fan S (2010) Fundamental limit of nanophotonic light trapping in solar cells. Proc Natl Acad Sci 107:17491-17496
36. Mokkapati S, Catchpole K (2012) Nanophotonic light trapping in solar cells. J Appl Phys 112:101101
37. Teperik TV, De Abajo FG, Borisov A et al (2008) Omnidirectional absorption in nanostructured metal surfaces. Nat Photonics 2:299-301
38. Podolskiy VA, Sarychev AK, Shalaev VM (2002) Plasmon modes in metal nanowires and left-handed materials. J Nonlinear Opt Phys Mater 11:65-74
39. Polman A (2008) Plasmonics applied. Science 322:868-869
40. Atwater HA, Polman A (2010) Plasmonics for improved photovoltaic devices. Nat Mater 9:205-213
41. Green MA, Pillai S (2012) Harnessing plasmonics for solar cells. Nat Photonics 6:130-132
42. Delacour C, Blaize S, Grosse P et al (2010) Efficient directional coupling between silicon and copper plasmonic nanoslot waveguides: toward metal-oxide-silicon nanophotonics. Nano Lett 10:2922-2926
43. Tsakalakos L, Balch J, Fronheiser J et al (2007) Silicon nanowire solar cells. Appl Phys Lett 91:233117
44. Kim HS, Lee CR, Im JH et al (2012) Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci Rep 2(8):591
45. Ferrell T, Sharp S, Warmack R (1992) Progress in photon scanning tunneling microscopy (PSTM). Ultramicroscopy 42:408-415
46. Paesler M, Moyer P, Jahncke C et al (1990) Analytical photon scanning tunneling microscopy. Phys Rev B 42:6750
47. Bourillot E, Fornel FD, Goudonnet JP et al (1995) Imaging of test quartz gratings with a photon scanning tunneling microscope: experiment and theory. J Opt Soc Am A 12(8):1749-1764
48. Carminati R, Greffet JJ (1995) Two-dimensional numerical simulation of the photon scanning tunneling microscope. Concept of transfer function. Opt Commun 116:316-321
49. Skomski R (2003) Nanomagnetics. J Phys Condens Matter 15:R841
50. Saywell A, Magnano G, Satterley CJ et al (2010) Self-assembled aggregates formed by single-molecule magnets on a gold surface. Nat Commun 1:75
51. del Carmen Giménez-López M, Moro F, La Torre A et al (2011) Encapsulation of single-molecule magnets in carbon nanotubes. Nat Commun 2:407
52. Manzetti S (2013) Molecular and crystal assembly inside the carbon nanotube: encapsulation and manufacturing approaches. Adv Manuf 1(3):198-210
53. Leuenberger MN, Loss D (2001) Quantum computing in molecular magnets. Nature 410:789-793
54. Haynes CL, Van Duyne RP (2001) Nanosphere lithography: a versatile nanofabrication tool for studies of size-dependent nanoparticle optics. J Phys Chem B 105:5599-5611
55. Rokhvarger AE, Chigirinsky LA (2004) Design and nanofabrication of superconductor ceramic strands and customized leads. Int J Appl Ceram Technol 1:129-139
56. Krishnan KM (2010) Biomedical nanomagnetics: a spin through possibilities in imaging, diagnostics, and therapy. IEEE Trans Magn 46:2523-2558
57. Welser J, Wolf SA, Avouris P et al (2011) Applications: nanoelectronics and nanomagnetics. In: Nanotechnol. Res. Dir. Soc. Needs 2020. Springer, Berlin, pp 375-415
58. Bogani L, Wernsdorfer W (2008) Molecular spintronics using single-molecule magnets. Nat Mater 7:179-186
59. Manzetti S, Lu T (2013) Alternant conjugated oligomers with tunable and narrow HOMO-LUMO gaps as sustainable nanowires. RSC Adv 3:25881-25890
60. Li C, Lin J (2010) Rare earth fluoride nano-/microcrystals: synthesis, surface modification and application. J Mater Chem 20:6831-6847
61. Vetrone F, Naccache R, Zamarron A et al (2010) Temperature sensing using fluorescent nanothermometers. ACS Nano 4:3254-3258
62. Bünzli JCG, Comby S, Chauvin AS et al (2007) New opportunities for lanthanide luminescence. J Rare Earths 25:257-274
63. Bloss W, Sham L, Vinter V (1979) Interaction-induced transition at low densities in silicon inversion layer. Phys Rev Lett 43:1529
64. Cserti J, Dávid G (2006) Unified description of Zitterbewegung for spintronic, graphene, and superconducting systems. Phys Rev B 74:172305
65. Manzetti S, Patek M (2016) The accurate wavefunction of the active space of the rhenium dimer resolved using the ab initio Brueckner coupled-cluster method. Struct Chem 27(4):1071-1080
66. Tulapurkar A, Suzuki Y, Fukushima A et al (2005) Spin-torque diode effect in magnetic tunnel junctions. Nature 438:339-342
67. Ohno H (2010) A window on the future of spintronics. Nat Mater 9:952-954
68. Locatelli N, Cros V, Grollier J (2014) Spin-torque building blocks. Nat Mater 13:11-20
69. Mai C, Barrette A, Yu Y et al (2013) Many-body effects in valleytronics: direct measurement of valley lifetimes in singlelayer MoS2. Nano Lett 14:202-206
70. Zeng M, Feng Y, Liang G (2011) Graphene-based spin caloritronics. Nano Lett 11:1369-1373
71. Myoung N, Seo K, Lee SJ et al (2013) Large current modulation and spin-dependent tunneling of vertical graphene/MoS2 heterostructures. ACS Nano 7:7021-7027
72. Cheng Y, Zhu Z, Tahir M et al (2013) Spin-orbit-induced spin splittings in polar transition metal dichalcogenide monolayers. EPL Europhys Lett 102:57001
73. Ohkawa FJ, Uemura Y (1977) Theory of valley splitting in an N-channel (100) inversion layer of Si I: formulation by extended zone effective mass theory. J Phys Soc Jpn 43:907-916
74. Ohkawa FJ, Uemura Y (1977) Theory of valley splitting in an N-channel (100) inversion layer of Si Ⅱ: electric break through. J Phys Soc Jpn 43:917-924
75. Ohkawa FJ, Uemura Y (1977) Theory of valley splitting in an N-channel (100) inversion layer of Si Ⅲ: enhancement of splittings by many-body effects. J Phys Soc Jpn 43:925-932
76. Behnia K (2012) Condensed-matter physics: polarized light boosts valleytronics. Nat Nanotechnol 7:488-489
77. Ezawa M (2013) Spin valleytronics in silicene: quantum spin hall-quantum anomalous hall insulators and single-valley semimetals. Phys Rev B 87:155415
78. Ezawa M (2014) Valleytronics on the surface of a topological crystalline insulator: elliptic dichroism and valley-selective optical pumping. Phys Rev B 89:195413
79. Nebel CE (2013) Valleytronics: electrons dance in diamond. Nat Mater 12:690-691
80. Maassen J, Ji W, Guo H (2010) Graphene spintronics: the role of ferromagnetic electrodes. Nano Lett 11:151-155
81. Novoselov K, Blake P, Katsnelson M (2001) Graphene: electronic properties. Encycl Mater Sci Technol 244:1-6
82. Pronschinske A, Pedevilla P, Murphy CJ et al (2015) Enhancement of low-energy electron emission in 2D radioactive films. Nat Mater 14:904-907
83. Sundaram SK, Mazur E (2002) Inducing and probing nonthermal transitions in semiconductors using femtosecond laser pulses. Nat Mater 1:217-224
84. Sanche L (2015) Cancer treatment: low-energy electron therapy. Nat Mater 14:861-863
85. Mattheiss LF (1973) Energy bands for 2H-Nb Se2 and 2H-Mo S2. Phys Rev Lett 30:784-787
86. Mattheiss LF (1966) Band structure and Fermi surface for rhenium. Phys Rev 151:450-464
87. Mattheiss LF (1973) Band structures of transition-metaldichalcogenide layer compounds. Phys Rev B 8:3719-3740
88. Te Velde G, Bickelhaupt FM, Baerends EJ et al (2001) Chemistry with ADF. J Comput Chem 22:931-967
89. Schrödinger E (1926) An undulatory theory of the mechanics of atoms and molecules. Phys Rev 28:1049-1070
90. Schrödinger E (1940) A method of determining quantum-mechanical eigenvalues and eigenfunctions. Proceedings of the Royal Irish Academy, pp 9-16
91. Tahir M, Schwingenschlögl U (2013) Valley polarized quantum hall effect and topological insulator phase transitions in silicene. Sci Rep 3:1075
92. Kaloni TP, Singh N, Schwingenschlögl U (2014) Prediction of a quantum anomalous hall state in Co-decorated silicene. Phys Rev B 89(3):208-220
93. Liu CC, Feng W, Yao Y (2011) Quantum spin hall effect in silicene and two-dimensional germanium. Phys Rev Lett 107(7):2989-2996
94. Zhang XL, Liu LF, Liu WM (2013) Quantum anomalous hall effect and tunable topological states in 3D transition metals doped silicene. Sci Rep 3:2908
95. Wu G, Lue NY, Chang L (2011) Graphene quantum dots for valley-based quantum computing: a feasibility study. Phys Rev B 84:195463
96. Lee MK, Lue NY, Wen CK et al (2012) Valley-based fieldeffect transistors in graphene. Phys Rev B 86:165411
97. Macià F, Kent AD, Hoppensteadt FC (2011) Spin-wave interference patterns created by spin-torque nano-oscillators for memory and computation. Nanotechnology 22:95301
98. Wang X, Chen Y, Xi H et al (2009) Spintronic memristor through spin-torque-induced magnetization motion. IEEE Electron Device Lett 30:294-297
99. Kainuma R, Imano Y, Ito W et al (2006) Magnetic-field-induced shape recovery by reverse phase transformation.Nature 439:957-960
100. Mañosa L, González-Alonso D, Planes A et al (2010) Giant solid-state barocaloric effect in the Ni-Mn-In magnetic shapememory alloy. Nat Mater 9:478-481
101. Krenke T, Duman E, Acet M et al (2005) Inverse magnetocaloric effect in ferromagnetic Ni-Mn-Sn alloys. Nat Mater 4:450-454
102. Khalsa G, Stiles MD, Grollier J (2015) Critical current and linewidth reduction in spin-torque nano-oscillators by delayed self-injection. Appl Phys Lett 106:242402
103. Locatelli N, Mizrahi A, Accioly A et al (2014) Noise-enhanced synchronization of stochastic magnetic oscillators. Phys Rev Appl 2:034009
104. Keatley P, Gangmei P, Dvornik M et al (2013) Isolating the dynamic dipolar interaction between a pair of nanoscale ferromagnetic disks. Phys Rev Lett 110:187202
105. Barber D, Freestone I (1990) An investigation of the origin of the colour of the Lycurgus cup by analytical transmission electron microscopy. Archaeometry 32:33-45
106. Webb JA, Bardhan R (2014) Emerging advances in nanomedicine with engineered gold nanostructures. Nanoscale 6:2502-2530
107. Anker JN, Hall WP, Lyandres O et al (2008) Biosensing with plasmonic nanosensors. Nat Mater 7:442-453
108. Hellebust A, Richards-Kortum R (2012) Advances in molecular imaging: targeted optical contrast agents for cancer diagnostics. Nanomed 7:429-445
109. Sanders M, Lin Y, Wei J et al (2014) An enhanced LSPR fiberoptic nanoprobe for ultrasensitive detection of protein biomarkers. Biosens Bioelectron 61:95-101
110. Xu LJ, Zong C, Zheng XS et al (2014) Label-free detection of native proteins by surface-enhanced Raman spectroscopy using iodide-modified nanoparticles. Anal Chem 86:2238-2245
111. Yu MK, Park J, Jon S (2012) Targeting strategies for multifunctional nanoparticles in cancer imaging and therapy. Theranostics 2:3
112. Huang X, El-Sayed MA (2011) Plasmonic photo-thermal therapy (PPTT). Alex J Med 47:1-9
113. Carregal-Romero S, Ochs M, Rivera-Gil P et al (2012) NIRlight triggered delivery of macromolecules into the cytosol. J Controll Release 159:120-127
114. Catchpole KR, Polman A (2008) Design principles for particle plasmon enhanced solar cells. Appl Phys Lett 93:191113
115. Lim S, Mar W, Matheu P et al (2007) Photocurrent spectroscopy of optical absorption enhancement in silicon photodiodes via scattering from surface plasmon polaritons in gold nanoparticles. J Appl Phys 101:104309
116. Zhang D, Yang X, Hong X et al (2015) Aluminum nanoparticles enhanced light absorption in silicon solar cell by surface plasmon resonance. Opt Quantum Electron 47:1421-1427
117. Martín-Rodríguez R, Geitenbeek R, Meijerink A (2013) Incorporation and luminescence of Yb3+ in CdSe nanocrystals. J Am Chem Soc 135:13668-13671
118. Mukherjee P, Sloan RF, Shade CM et al (2013) A postsynthetic modification of Ⅱ-VI semiconductor nanoparticles to create Tb3+ and Eu3+ luminophores. J Phys Chem C 117:14451-14460
119. Chen CJ, Haik Y, Chatterjee J (2004) Nanomagnetics in biotechnology. In: Proceedings of the international workshop on materials analysis and processing in magnetic fields, Tallahassee, Florida, 17-19 March 2004
120. Shamim N, Hong L, Hidajat K et al (2007) Thermosensitive polymer (N-isopropylacrylamide) coated nanomagnetic particles: preparation and characterization. Colloids Surf B Biointerfaces 55:51-58
121. Shamim N, Liang H, Hidajat K et al (2008) Adsorption, desorption, and conformational changes of lysozyme from thermosensitive nanomagnetic particles. J Colloid Interface Sci 320:15-21
122. Horng HE, Yang SY, Huang Y et al (2005) Nanomagnetic particles for SQUID-based magnetically labeled immunoassay. IEEE Trans Appl Supercond 15:668-671
123. Parekh K, Upadhyay R (2010) Static and dynamic magnetic properties of monodispersed Mn0.5Zn0.5Fe2O4 nanomagnetic particles. J Appl Phys 107:053907
124. Taketomi S (1998) Spin-glass-like complex susceptibility of frozen magnetic fluids. Phys Rev E 57:3073
125. Yoo SK, Lee SY (2000) Geometrical phase effects in biaxial nanomagnetic particles. Phys Rev B 62:5713-5718
126. Chakraverty S, Ghosh B, Kumar S et al (2006) Magnetic coding in systems of nanomagnetic particles. Appl Phys Lett 88:042501
127. Miller J, Kropf A, Zha Y et al (2006) The effect of gold particle size on Au-Au bond length and reactivity toward oxygen in supported catalysts. J Catal 240:222-234
128. Carlson C, Hussain SM, Schrand AM et al (2008) Unique cellular interaction of silver nanoparticles: size-dependent generation of reactive oxygen species. J Phys Chem B 112:13608-13619
129. El-Sayed MA (2001) Some interesting properties of metals confined in time and nanometer space of different shapes. Acc Chem Res 34:257-264
130. Nikoobakht B, El-Sayed MA (2003) Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method. Chem Mater 15:1957-1962
131. Sreeprasad T, Nguyen P, Kim N et al (2013) Controlled, defectguided, metal-nanoparticle incorporation onto MoS2 via chemical and microwave routes: electrical, thermal, and structural properties. Nano Lett 13:4434-4441
132. Gawande MB, Shelke SN, Zboril R et al (2014) Microwaveassisted chemistry: synthetic applications for rapid assembly of nanomaterials and organics. Acc Chem Res 47:1338-1348
133. Komarneni S, Li D, Newalkar B et al (2002) Microwave-polyol process for Pt and Ag nanoparticles. Langmuir 18:5959-5962
134. Zhao Y, Zhu J, Hong J et al (2004) Microwave-induced polyol-process synthesis of copper and copper oxide nanocrystals with controllable morphology. Eur J Inorg Chem 2004:4072-4080
135. Cheng W, Cheng HW (2009) Synthesis and characterization of cobalt nano-particles through microwave polyol process. AIChE J 55:1383-1389
136. Komarneni S, Roy R, Li Q (1992) Microwave-hydrothermal synthesis of ceramic powders. Mater Res Bull 27:1393-1405
137. Gao F, Lu Q, Komarneni S (2005) Interface reaction for the selfassembly of silver nanocrystals under microwave-assisted solvothermal conditions. Chem Mater 17:856-860
138. Manzetti S (2017) NANOGEL: Synthesis of cadmium nanoparticles from a carefully selected ionic liquid of Cd2+ and benzoic acid. www.fjordforsk.no/nanogel.php
139. Itoh H, Naka K, Chujo Y (2004) Synthesis of gold nanoparticles modified with ionic liquid based on the imidazolium cation. J Am Chem Soc 126:3026-3027
140. Grzelczak M, Pérez-Juste J, Mulvaney P et al (2008) Shape control in gold nanoparticle synthesis. Chem Soc Rev 37:1783-1791
141. Yin B, Ma H, Wang S et al (2003) Electrochemical synthesis of silver nanoparticles under protection of poly (N-vinylpyrrolidone). J Phys Chem B 107:8898-8904
142. Guo D, Li H (2004) Electrochemical synthesis of Pd nanoparticles on functional MWNT surfaces. Electrochem Commun 6:999-1003
143. Manzetti S, Andersen O, Garcia C et al (2016) Molecular simulation of carbon nanotubes as sorptive materials: sorption effects towards retene, perylene and cholesterol to 100 degrees Celsius and above. Mol Simul 14:1-10
144. Manzetti S (2012) Chemical and electronic properties of polycyclic aromatic hydrocarbons: a review. Handb Polycycl Aromat Hydrocarb Chem Occur Health Issues 309-330
145. Rodriguez-Sanchez L, Blanco M, Lopez-Quintela M (2000) Electrochemical synthesis of silver nanoparticles. J Phys Chem B 104:9683-9688
146. Xing G, Wang D, Cheng CJ et al (2013) Emergent ferromagnetism in ZnO/Al2O3 core-shell nanowires: towards oxide spinterfaces. Appl Phys Lett 103:022402
147. Dutta DP, Mandal BP, Naik R et al (2013) Magnetic, ferroelectric, and magnetocapacitive properties of sonochemically synthesized Sc-doped BiFeO3 nanoparticles. J Phys Chem C 117:2382-2389
148. Ghosh S, Yang R, Kaumeyer M et al (2014) Fabrication of electrically conductive metal patterns at the surface of polymer films by microplasma-based direct writing. ACS Appl Mater Interfaces 6:3099-3104
149. Chen D, Yu Y, Huang F et al (2010) Modifying the size and shape of monodisperse bifunctional alkaline-earth fluoride nanocrystals through lanthanide doping. J Am Chem Soc 132:9976-9978
150. Yang Y, Jin Y, He H et al (2010) Dopant-induced shape evolution of colloidal nanocrystals: the case of zinc oxide. J Am Chem Soc 132:13381-13394
151. Pal S, Bhunia A, Jana PP et al (2015) Microporous La-metal- organic framework (MOF) with large surface area. Chem Eur J 21:2789-2792
152. Dey R, Bhattacharya B, Pachfule P et al (2014) Flexible dicarboxylate based pillar-layer metal organic frameworks: differences in structure and porosity by tuning the pyridyl based N, N' linkers. Cryst Eng Commun 16:2305-2316
153. Liu BH, Ding J, Zhong Z et al (2002) Large-scale preparation of carbon-encapsulated cobalt nanoparticles by the catalytic method. Chem Phys Lett 358:96-102
154. Lowndes DH, Rouleau CM, Thundat T et al (1998) Silicon and zinc telluride nanoparticles synthesized by pulsed laser ablation: size distributions and nanoscale structure. Appl Surf Sci 127:355-361
155. Mafuné F, Kohno J, Takeda Y et al (2000) Formation and size control of silver nanoparticles by laser ablation in aqueous solution. J Phys Chem B 104:9111-9117
156. Mafuné F, Kohno J, Takeda Y et al (2000) Structure and stability of silver nanoparticles in aqueous solution produced by laser ablation. J Phys Chem B 104:8333-8337
157. Becker MF, Brock JR, Cai H et al (1998) Nanoparticles generated by laser ablation. Conf Lasers Electro-Opt 10(5):151-152
158. Sen P, Ghosh J, Abdullah A et al (2003) Preparation of Cu, Ag, Fe and Al nanoparticles by the exploding wire technique. J Chem Sci 115:499-508
159. Andrievski R (2003) Modern nanoparticle research in Russia. J Nanoparticle Res 5:415-418
160. Goswami N, Sen P (2004) Water-induced stabilization of ZnS nanoparticles. Solid State Commun 132:791-794
161. Phillips J, Perry WL, Kroenke WJ (2004) Method for producing metallic nanoparticles. U.S. Patent No. 6,689,192, 10 February 2004
162. Bica I (1999) Nanoparticle production by plasma. Mater Sci Eng B 68:5-9
163. Swihart MT (2003) Vapor-phase synthesis of nanoparticles. Curr Opin Colloid Interface Sci 8:127-133
164. Kaneko T, Hatakeyama R, Takahashi S (2013) Plasma process on ionic liquid substrate for morphology controlled nanoparticles. INTECH Open Access Publisher. Chapter 24
165. Graneau P (1983) First indication of Ampere tension in solid electric conductors. Phys Lett A 97:253-255
166. Amendola V, Meneghetti M (2009) Laser ablation synthesis in solution and size manipulation of noble metal nanoparticles. Phys Chem Chem Phys 11:3805-3821
167. Sajti CL, Sattari R, Chichkov BN et al (2010) Gram scale synthesis of pure ceramic nanoparticles by laser ablation in liquid. J Phys Chem C 114:2421-2427
168. Abdolvand A, Khan SZ, Yuan Y et al (2008) Generation of titanium-oxide nanoparticles in liquid using a high-power, highbrightness continuous-wave fiber laser. Appl Phys A 91:365-368
169. Wang X, Shephard JD, Dear FC et al (2008) Optimized nanosecond pulsed laser micromachining of Y-TZP ceramics. J Am Ceram Soc 91:391-397
170. Borysiuk J, Grabias A, Szczytko J et al (2008) Structure and magnetic properties of carbon encapsulated Fe nanoparticles obtained by arc plasma and combustion synthesis. Carbon 46:1693-1701
171. Scott JHJ, Majetich SA (1995) Morphology, structure, and growth of nanoparticles produced in a carbon arc. Phys Rev B 52:12564-12571
172. Delaunay JJ, Hayashi T, Tomita M et al (1997) CoPt-C nanogranular magnetic thin films. Appl Phys Lett 71:3427-3429
173. Li T, Yan H, Wang H et al (2005) CoPt/C nanogranular magnetic thin film. Int J Mod Phys B 19:2261-2271
174. Lu Y, Zhu Z, Liu Z (2005) Carbon-encapsulated Fe nanoparticles from detonation-induced pyrolysis of ferrocene. Carbon 43:369-374
175. Hayashi T, Hirono S, Tomita M et al (1997) Magnetic thin films of cobalt nanocrystals encapsulated in graphite-like carbon. Cambridge University Press, Cambridge, p 33
176. Harris P, Tsang S (1998) A simple technique for the synthesis of filled carbon nanoparticles. Chem Phys Lett 293:53-58
177. Britz DA, Khlobystov AN (2006) Noncovalent interactions of molecules with single walled carbon nanotubes. Chem Soc Rev 35:637-659
178. Iravani S (2011) Green synthesis of metal nanoparticles using plants. Green Chem 13:2638-2650
179. Shankar SS, Ahmad A, Pasricha R et al (2003) Bioreduction of chloroaurate ions by geranium leaves and its endophytic fungus yields gold nanoparticles of different shapes. J Mater Chem 13:1822-1826
180. Yang X, Li Q, Wang H et al (2010) Green synthesis of palladium nanoparticles using broth of Cinnamomum camphora leaf. J Nanoparticle Res 12:1589-1598
181. Huang J, Lin L, Li Q et al (2008) Continuous-flow biosynthesis of silver nanoparticles by lixivium of sundried Cinnamomum camphora leaf in tubular microreactors. Ind Eng Chem Res47:6081-6090
182. Sharma B, Purkayastha DD, Hazra S et al (2014) Biosynthesis of gold nanoparticles using a freshwater green alga, Prasiola crispa. Mater Lett 116:94-97
183. Kumar B, Smita K, Cumbal L (2016) Biofabrication of nanogold from the flower extracts of Lantana camara. IET Nanobiotechnol 10:154-157
184. Paul B, Bhuyan B, Purkayastha DD et al (2015) Green synthesis of gold nanoparticles using Pogestemon benghalensis (B) O. Ktz. leaf extract and studies of their photocatalytic activity in degradation of methylene blue. Mater Lett 148:37-40 |