1. Zhong N, Zhou YX, Zhu XF et al (2011) Microstructure and cutting performance of carbonitride coated tools in high speed machining of 40Cr steel. Surf Eng 27(4):306-310 2. Tlhabadira I, Daniyan IA, Machaka R et al (2019) Modelling and optimization of surface roughness during AISI P20 milling process using Taguchi method. Int J Adv Manuf Tech 102(9):3707-3718 3. Shi KN, Ren JX, Wang SB et al (2019) An improved cutting power-based model for evaluating total energy consumption in general end milling process. J Clean Prod 231:1330-1341 4. Zhu CM, Gu P, Wu YY et al (2019) Surface roughness prediction model of SiCp/Al composite in grinding. Int J Mech Sci 155:98-109 5. Liu N, Zhang YF, Lu WF (2015) A hybrid approach to energy consumption modelling based on cutting power:a milling case. J Clean Prod 104:264-272 6. He Y, Wang LX, Wang YL et al (2019) An analytical model for predicting specific cutting energy in whirling milling process. J Clean Prod 240:1-16 7. Kant G, Sangwan KS (2015) Predictive modeling for energy consumption in machining using artificial neural network. Proc CIRP 37:205-210 8. Pimenov DY, Bustillo A, Mikolajczyk T (2018) Artificial intelligence for automatic prediction of required surface roughness by monitoring wear on face mill teeth. J Intell Manuf 29(5):1045-1061 9. Bustillo A, Pimenov DY, Mia M et al (2020) Machine-learning for automatic prediction of flatness deviation considering the wear of the face mill teeth. J Intell Manuf. https://doi.org/10.1007/s10845-020-01645-3 10. Lau HCW, Cheng ENM, Lee CKM et al (2008) A fuzzy logic approach to forecast energy consumption change in a manufacturing system. Expert Syst Appl 34(3):1813-1824 11. Ullah I, Ahmad R, Kim D (2018) A prediction mechanism of energy consumption in residential buildings using hidden Markov model. Energies 11(2):358-359 12. Misaka T, Herwan J, Ryabov O et al (2020) Prediction of surface roughness in CNC turning by model-assisted response surface method. Precis Eng 62:196-203 13. Li LB, Wu MY, Liu XL et al (2017) The prediction of surface roughness of PCBN turning GH4169 based on adaptive genetic algorithm. Integr Ferroelectr 180(1):118-132 14. Rizal M, Ghani JA, Nuawi MZ et al (2013) Online tool wear prediction system in the turning process using an adaptive neurofuzzy inference system. Appl Soft Comput 13:1960-1968 15. Maher I, Eltaib MEH, Sarhan A et al (2014) Investigation of the effect of machining parameters on the surface quality of machined brass (60/40) in CNC end milling-ANFIS modeling. Int J Adv Manuf Tech 74(1):531-537 16. Sparham M, Sarhan AAD, Mardi NA et al (2017) ANFIS modeling to predict the friction forces in CNC guideways and servomotor currents in the feed drive system to be employed in lubrication control system. J Manuf Process 28:168-185 17. Sarkheyli A, Azlan MZ, Safian S (2015) Robust optimization of ANFIS based on a new modified GA. Neurocomputing 166:357-366 18. Adedeji PA, Stephen A, Nkosinathi M et al (2020) Wind turbine power output very short-term forecast:a comparative study of data clustering techniques in a PSO-ANFIS model. J Clean Prod 254:120-135 19. Hasanipanah M, Amnieh HB, Arab H et al (2018) Feasibility of PSO-ANFIS model to estimate rock fragmentation produced by mine blasting. Neural Comput Appl 30:1015-1024 20. Pimenov DY, Abbas AT, Gupta MK et al (2020) Investigations of surface quality and energy consumption associated with costs and material removal rate during face milling of AISI 1045 steel. Int J Adv Manuf Tech 107(7):3511-3525 21. Abbas AT, Pimenov DY, Erdakov IN et al (2019) Optimization of cutting conditions using artificial neural networks and the Edgeworth-Pareto method for CNC face-milling operations on high-strength grade-H steel. Int J Adv Manuf Tech 105(5):2151-2165 22. Krimpenis AA, Fountas NA (2016) Balancing multiple criteria in formulation of weighted, single-objective genetic algorithm optimization for CNC machining problems. Adv Manuf 4:178-188 23. Manivel D, Gandhinathan R (2016) Optimization of surface roughness and tool wear in hard turning of austempered ductile iron (grade 3) using Taguchi method. Measurement 93:108-116 24. Negrete C (2015) Optimization of cutting parameters using response surface method for minimizing energy consumption and maximizing cutting quality in turning of AISI 6061 T6 aluminum. J Clean Prod 91:109-117 25. Keshtiara M, Golabi S, Tarkesh ER (2019) Multi-objective optimization of stainless steel 304 tube laser forming process using GA. Eng Comput-Germany. https://doi.org/10.1007/s00366-019-00814-0 26. Babaei M, Mollayi M (2016) Multi-objective optimization of reinforced concrete frames using NSGA-II algorithm. Eng Struct Technol 8(4):157-164 27. Li L, Deng X, Zhao J et al (2018) Multi-objective optimization of tool path considering efficiency, energy-saving and carbonemission for free-form surface milling. J Clean Prod 172:3311-3322 28. Ampellio E, Vassio L (2016) A hybrid swarm-based algorithm for single-objective optimization problems involving high-cost analyses. Swarm Intell-US 10(2):99-121 29. Saw LH, Ho LW, Yew MC et al (2018) Sensitivity analysis of drill wear and optimization using adaptive neuro fuzzy-genetic algorithm technique toward sustainable machining. J Clean Prod 172:3289-3298 30. Jang JSR (1993) ANFIS:adaptive-network-based fuzzy inference system. IEEE Trans Syst Man Cybern 23:665-685 31. Hosoz M, Ertunc HM, Bulgurcu H (2011) An adaptive neurofuzzy inference system model for predicting the performance of a refrigeration system with a cooling tower. Expt Syst Appl 38:14148-14155 32. Dewan MW, Huggett DJ, Liao TW et al (2016) Prediction of tensile strength of friction stir weld joints with adaptive neurofuzzy inference system (ANFIS) and neural network. Mater Design 92:288-299 33. Kennedy J, Eberhart RC, Shi Y (2001) Swarm Intelligence. Morgan Kaufmann Publishers, San Francisco 34. Hoang TT, Cho MY, Alam MN et al (2018) A novel differential particle swarm optimization for parameter selection of support vector machines for monitoring metal-oxide surge arrester conditions. Swarm Evol Comput 38:120-126 35. Xu L, Huang C, Li C et al (2020) An improved case based reasoning method and its application in estimation of surface quality toward intelligent machining. J Intell Manuf. https://doi.org/10.1007/s10845-020-01573-2 36. Li JG, Lu Y, Zhao H et al (2014) Optimization of cutting parameters for energy saving. Int J Adv Manuf Tech 70:117-124 37. Kant G, Sangwan K (2014) Prediction and optimization of machining parameters for minimizing power consumption and surface roughness in machining. J Clean Prod 83:151-164 |