1. Tu G, Wu S, Liu J et al (2016) Cutting performance and wear mechanisms of Sialon ceramic cutting tools at high speed dry turning of gray cast iron. Int J Refract Met Hard Mater 54:330-334 2. Li L, Deng X, Zhao J et al (2018) Multi-objective optimization of tool path considering efficiency energy-saving and carbon-emission for free-form surface milling. J Clean Prod 172:3311-3322 3. Lin W, Yu DY, Wang S et al (2015) Multi-objective teachinglearning-based optimization algorithm for reducing carbon emissions and operation time in turning operations. Eng Optim 47:994-1007 4. Wang W, Tian G, Chen M et al (2020) Dual-objective program and improved artificial bee colony for the optimization of energyconscious milling parameters subject to multiple constraints. J Clean Prod 245:118714. https://doi.org/10.1016/j.jclepro.2019.118714 5. Gui F, Ren S, Zhao Y et al (2019) Activity-based allocation and optimization for carbon footprint and cost in product lifecycle. J Clean Prod 36:117627. https://doi.org/10.1016/j.jclepro.2019.117627 6. Claudin C, Rech J (2009) Development of a new rapid characterization method of hob's wear resistance in gear manufacturing:application to the evaluation of various cutting edge preparations in high speed dry gear hobbing. J Mater Process Technol 209(11):5152-5160 7. Karpuschewski B, Beutner M, Köchig M et al (2017) Cemented carbide tools in high speed gear hobbing applications. CIRP Ann 66:117-120 8. El-Mounayri H, Deng H (2010) A generic and innovative approach for integrated simulation and optimisation of end milling using solid modelling and neural network. Int J Comput Integr Manuf 23:40-60 9. Ma H, Liu W, Zhou X et al (2020) An effective and automatic approach for parameters optimization of complex end milling process based on virtual machining. J Intell Manuf 31:967-984 10. Tian C, Zhou G, Zhang J et al (2019) Optimization of cutting parameters considering tool wear conditions in low-carbon manufacturing environment. J Clean Prod 226:706-719 11. Chen X, Li C, Tang Y et al (2019) Integrated optimization of cutting tool and cutting parameters in face milling for minimizing energy footprint and production time. Energy 175:1021-1037 12. Kuntoğlu M, Sağlam H (2019) Investigation of progressive tool wear for determining of optimized machining parameters in turning. Measurement 140:427-436 13. Mia M, Dey PR, Hossain MS et al (2018) Taguchi based optimization of machining parameters for surface roughness, tool wear and material removal rate in hard turning under MQL cutting condition. Measurement 122:380-391 14. Petrović M, Mitić M, Vuković N et al (2016) Chaotic particle swarm optimization algorithm for flexible process planning. Int J Adv Manuf Technol 85:2535-2555 15. Karpuschewski B, Beutner M, Köchig M et al (2017) Influence of the tool profile on the wear behaviour in gear hobbing. CIRP J Manuf Sci Technol 18:128-134 16. Brecher C, Brumm M, Krömer M (2015) Design of gear hobbing processes using simulations and empirical data. Procedia CIRP 33:484-489 17. Klocke F, Döbbeler B, Goetz S et al (2016) Online tool wear measurement for hobbing of highly loaded gears in Geared Turbo Fans. Procedia Manuf 6:9-16 18. Sari D, Troß N, Löpenhaus C et al (2019) Development of an application-oriented tool life equation for dry gear finish hobbing. Wear 426-427(Part B):1563-1572 19. Zhou G, Lu Q, Xiao Z et al (2019) Cutting parameter optimization for machining operations considering carbon emissions. J Clean Prod 208:937-950 20. Mia M, Rifat A, Tanvir MF et al (2018) Multi-objective optimization of chip-tool interaction parameters using Grey-Taguchi method in MQL-assisted turning. Measurement 129:156-166 21. Kumar R, Hynes NRJ, Pruncu CI et al (2019) Multi-objective optimization of green technology thermal drilling process using grey-fuzzy logic method. J Clean Prod 236:117711. https://doi.org/10.1016/j.jclepro.2019.117711 22. Deng Z, Zhang H, Fu Y et al (2017) Optimization of process parameters for minimum energy consumption based on cutting specific energy consumption. J Clean Prod 166:1407-1414 23. Rana P, Lalwani DI (2017) Parameters optimization of surface grinding process using modified e constrained differential evolution. Mater Today Proc 4(9):10104-10108 24. Deng Z, Lv L, Li S et al (2016) Study on the model of high efficiency and low carbon for grinding parameters optimization and its application. J Clean Prod 137:1672-1681 25. Zhang F, Zhou T (2019) Process parameter optimization for laser-magnetic welding based on a sample-sorted support vector regression. J Intell Manuf 30:2217-2230 26. Kitayama S, Yamazaki Y, Takano M et al (2018) Numerical and experimental investigation of process parameters optimization in plastic injection molding using multi-criteria decision making. Simul Model Pract Theory 85:95-105 27. Umer U, Mohammed MK, Al-Ahmari A (2017) Multi-response optimization of machining parameters in micro milling of alumina ceramics using Nd:YAG laser. Measurement 95:181-192 28. Li C, Xiao Q, Tang Y et al (2016) A method integrating Taguchi, RSM and MOPSO to CNC machining parameters optimization for energy saving. J Clean Prod 135:263-275 29. Yi Q, Li C, Tang Y et al (2015) Multi-objective parameter optimization of CNC machining for low carbon manufacturing. J Clean Prod 95:256-264 30. Cao WD, Yan CP, Ding L et al (2016) A continuous optimization decision making of process parameters in high-speed gear hobbing using IBPNN/DE algorithm. Int J Adv Manuf Technol 85:2657-2667 31. Ni H, Yan C, Cao W et al (2020) A novel parameter decision approach in hobbing process for minimizing carbon footprint and processing time. Int J Adv Manuf Technol 111:3405-3419 32. Taylor FW (1906) On the art of cutting metals. The American Society of Mechanical Engineers, New York 33. Mirjalili S, Jangir P, Mirjalili SZ et al (2017) Optimization of problems with multiple objectives using the multi-verse optimization algorithm. Knowl Based Syst 134:50-71 34. Mirjalili S, Mirjalili SM, Hatamlou A (2016) Multi-verse optimizer:a nature-inspired algorithm for global optimization. Neural Comput Appl 27(2):495-513 35. Zhang Y, Cao H, Zhu L et al (2017) High-speed dry gear hob life prediction model and optimization method. China Mech Eng 28(21):2614-2620 |