Zhen-You Zhang Ke-Sheng Wang. Wind turbine fault detection based on SCADA data analysis using ANN[J]. Advances in Manufacturing, doi: 10.1007/s40436-014-0061-6.
1. Global Wind Energy Council (2013) Global wind statistics 2012,pp 1–42. Blanco MI (2009) The economics of wind energy. Renew SustainEnergy Rev 13(6–7):1372–13823. Pinar Pe´rez JM, Garc?´a Ma´rquez FP, Tobias A et al (2013) Windturbine reliability analysis. Renew Sustain Energy Rev 23:463–4724. Becker E, Poste P (2006) Keeping the condition monitoring ofwind turbine gears. Wind Energy 7(2):26–325. Laouti N. Sheibat-Othman N, Othman S (2011) Support vectormachines for fault detection in wind turbines. In: The 18th IFACworld congress, Milan, Italy, pp 7067–70726. Wang K (2005) Applied computational intelligence in intelligentmanufacturing systems. Advanced Knowledge International PtyLtd, Australia7. McCulloch WS, Pitts W (1943) A logical calculus of the ideasimmanent in nervous activity. Bull Math Biophys 5(4):115–1338. Rumelhart DE, Hinton GE, Williams RJ (1986) Learning internalrepresentations by error propagation. In: Rumenhart DE,McCelland JL (eds) Parallel distributed processing: explorationsin the microstructure of cognition. MIT Press, Cambridge,pp 318–3629. Verma A, Kusiak A (2012) Fault monitoring of wind turbinegenerator brushes: a data-mining approach. J Sol Energy Eng,doi:10.1115/1.400562410. Hansen MOL (2007) Aerodynamics of wind turbines. 2nd edn.Earthscan, London11. Zaher A, McArthur SDJ, Infield DG et al (2009) Online windturbine fault detection through automated SCADA data analysis.Wind Energy 12(6):574–59312. Garcia MC, Sanz-Bobi MA, del Pico J (2006) SIMAP: intelligentsystem for predictive maintenance application to the health conditionmonitoring of a wind turbine gearbox. Comput Ind 57(6):552–568