Advances in Manufacturing ›› 2018, Vol. 6 ›› Issue (2): 137-154.doi: 10.1007/s40436-018-0218-9
• ARTICLES • Next Articles
Cheng-Wei Kang1, Feng-Zhou Fang1,2
Received:
2017-11-17
Revised:
2018-03-14
Online:
2018-06-25
Published:
2018-06-27
Contact:
Feng-Zhou Fang
E-mail:fengzhou.fang@ucd.ie
Supported by:
Cheng-Wei Kang, Feng-Zhou Fang. State of the art of bioimplants manufacturing: part II[J]. Advances in Manufacturing, 2018, 6(2): 137-154.
1. Kurtz S, Ong K, Lau E et al (2007) Projections of primary and revision hip and knee arthroplasty in the United States from 2005 to 2030. JBJS 89(4):780-785 2. Prakasam M, Locs J, Salma-Ancane K et al (2017) Biodegradable materials and metallic implants-a review. J Funct Biomater 8(4):44 3. Roach P, Eglin D, Rohde K et al (2007) Modern biomaterials:a review-bulk properties and implications of surface modifications. J Mater Sci Mater Med 18(7):1263-1277 4. Hornberger H, Virtanen S, Boccaccini A (2012) Biomedical coatings on magnesium alloys-a review. Acta Biomater 8(7):2442-2455 5. Curtis A, Wilkinson C (1997) Topographical control of cells. Biomaterials 18(24):1573-1583 6. Bauer S, Schmuki P, von der Mark K et al (2013) Engineering biocompatible implant surfaces:part I:materials and surfaces. Prog Mater Sci 58(3):261-326 7. Wennerberg A, Albrektsson T, Andersson B et al (1995) A histomorghometric study of screw-shaped and removal torque titanium implants with three different surface topographies. Clin Oral Implant Res 6(1):24-30 8. Wennerberg A, Hallgren C, Johansson C et al (1998) A histomorphometric evaluation of screw-shaped implants each prepared with two surface roughnesses. Clin Oral Implant Res 9(1):11-19 9. Ramsden JJ, Allen DM, Stephenson DJ et al (2007) The design and manufacture of biomedical surfaces. CIRP Ann Manuf Technol 56(2):687-711 10. Guo Y, Caslaru R (2011) Fabrication and characterization of micro dent arrays produced by laser shock peening on titanium Ti-6Al-4V surfaces. J Mater Process Technol 211(4):729-736 11. Hu T, Hu L, Ding Q (2012) Effective solution for the tribological problems of Ti-6Al-4V:combination of laser surface texturing and solid lubricant film. Surf Coat Technol 206(24):5060-5066 12. Heimann RB (2008) Plasma-spray coating:principles and applications. Wiley, Weinheim 13. Mittal M, Nath S, Prakash S (2013) Improvement in mechanical properties of plasma sprayed hydroxyapatite coatings by Al2O3 reinforcement. Mater Sci Eng C 33(5):2838-2845 14. Mohseni E, Zalnezhad E, Bushroa AR (2014) Comparative investigation on the adhesion of hydroxyapatite coating on Ti-6Al-4V implant:a review paper. Int J Adhes Adhes 48:238-257 15. Cook SD, Thomas KA, Kay JF et al (1988) Hydroxyapatitecoated porous titanium for use as an orthopedic biologic attachment system. Clin Orthop Relat Res 230:303 16. Søballe K, Hansen ES, Brockstedt-Rasmussen H et al (1990) Hydroxyapatite coating enhances fixation of porous coated implants:a comparison in dogs between press fit and noninterference fit. Acta Orthop Scand 61(4):299-306 17. Jansen J, van de Waerden J, Wolke J et al (1991) Histologic evaluation of the osseous adaptation to titanium and hydroxyapatite-coated titanium implants. J Biomed Mater Res Part A 25(8):973-989 18. Moroni A, Caja V, Sabato C et al (1994) Bone ingrowth analysis and interface evaluation of hydroxyapatite coated versus uncoated titanium porous bone implants. J Mater Sci Mater Med 5(6):411-416 19. Mohseni E, Zalnezhad E, Bushroa AR (2014) Comparative investigation on the adhesion of hydroxyapatite coating on Ti-6Al-4V implant:a review paper. Int J Adhes Adhes 48:238-257 20. Yang YC, Chang E (2001) Influence of residual stress on bonding strength and fracture of plasma-sprayed hydroxyapatite coatings on Ti-6Al-4V substrate. Biomaterials 22(13):1827-1836 21. Nimb L, Gotfredsen K, Steen JJ (1993) Mechanical failure of hydroxyapatite-coated titanium and cobalt-chromium-molybdenum alloy implants. An animal study. Acta Orthop Belg 59:333 22. Yang Y, Kim KH, Ong JL (2005) A review on calcium phosphate coatings produced using a sputtering process-an alternative to plasma spraying. Biomaterials 26(3):327-337 23. Ong JL, Harris LA, Lucas LC et al (1991) X-ray photoelectron spectroscopy characterization of ion-beam sputter-deposited calcium phosphate coatings. J Am Ceram Soc 74(9):2301-2304 24. Ozeki K, Yuhta T, Aoki H et al (2000) Crystal chemistry of hydroxyapatite deposited on titanium by sputtering technique. Bio-Med Mater Eng 10(3-4):221-227 25. Toque JA, Herliansyah M, Hamdi M et al (2010) Adhesion failure behavior of sputtered calcium phosphate thin film coatings evaluated using microscratch testing. J Mech Behav Biomed Mater 3(4):324-330 26. Ozeki K, Fukui Y, Aoki H (2006) Hydroxyapatite coated dental implants by sputtering technique. Biocybern Biomed Eng 26(1):95-101 27. Ozeki K, Yuhta T, Fukui Y et al (2002) Phase composition of sputtered films from a hydroxyapatite target. Surf Coat Technol 160(1):54-61 28. Van Dijk K, Schaeken H, Wolke J et al (1996) Influence of annealing temperature on RF magnetron sputtered calcium phosphate coatings. Biomaterials 17(4):405-410 29. Rautray TR, Narayanan R, Kim KH (2011) Ion implantation of titanium based biomaterials. Prog Mater Sci 56(8):1137-1177 30. Sioshansi P, Tobin EJ (1996) Surface treatment of biomaterials by ion beam processes. Surf Coat Technol 83(1-3):175-182 31. Serekian P (2004) Hydroxyapatite:from plasma spray to electrochemical deposition. In:The fifteen years of clinical experience with hydroxyapatite coatings in joint arthroplasty. Springer, pp 29-33 32. Krupa D, Baszkiewicz J, Kozubowski J et al (2002) Effect of phosphorus-ion implantation on the corrosion resistance and biocompatibility of titanium. Biomaterials 23(16):3329-3340 33. Choi JM, Kim HE, Lee IS (2000) Ion-beam-assisted deposition (IBAD) of hydroxyapatite coating layer on Ti-based metal substrate. Biomaterials 21(5):469-473 34. Chen XB, Li YC, Du PJ et al (2009) Influence of calcium ion deposition on apatite-inducing ability of porous titanium for biomedical applications. Acta Biomater 5(5):1808-1820 35. Yoshinari M, Oda Y, Kato T et al (2001) Influence of surface modifications to titanium on antibacterial activity in vitro. Biomaterials 22(14):2043-2048 36. Blawert C, Dietzel W, Ghali E et al (2006) Anodizing treatments for magnesium alloys and their effect on corrosion resistance in various environments. Adv Eng Mater 8(6):511-533 37. Zhang X, Zhao Z, Wu F et al (2007) Corrosion and wear resistance of AZ91D magnesium alloy with and without microarc oxidation coating in Hank's solution. J Mater Sci 42(20):8523-8528 38. Jo JH, Hong JY, Shin KS et al (2012) Enhancing biocompatibility and corrosion resistance of Mg implants via surface treatments. J Biomater Appl 27(4):469-476 39. Sarkar P, Nicholson PS (1996) Electrophoretic deposition (EPD):mechanisms, kinetics, and application to ceramics. J Am Ceram Soc 79(8):1987-2002 40. Wei M, Ruys A, Milthorpe B et al (2001) Electrophoretic deposition of hydroxyapatite coatings on metal substrates:a nanoparticulate dual-coating approach. J Sol Gel Sci Technol 21(1):39-48 41. Soares GA, de Sena LÁ, Rossi AM et al (2003) Effect of electrophoretic apatite coating on osseointegration of titanium dental implants. Key Eng Mater 254-256:729-732 42. Nie X, Leyland A, Matthews A (2000) Deposition of layered bioceramic hydroxyapatite/TiO2 coatings on titanium alloys using a hybrid technique of micro-arc oxidation and electrophoresis. Surf Coat Technol 125(1):407-414 43. Zhang Z, Dunn MF, Xiao T et al (2002) Nanostructured hydroxyapatite coatings for improved adhesion and corrosion resistance for medical implants. Mater Res Soc Symp Proc 291-296 44. Larker HT, Larker R (1991) Hot isostatic pressing. In:Cahn RW, Haasen P, Kramer EJ (eds) Materials science and technology. VCH, Weinheim, pp 146-174 45. Khor K, Yip C, Cheang P (1997) Post-spray hot isostatic pressing of plasma sprayed Ti-6Al-4V/hydroxyapatite composite coatings. J Mater Process Technol 71(2):280-287 46. Bao Q, Chen C, Wang D et al (2005) Pulsed laser deposition and its current research status in preparing hydroxyapatite thin films. Appl Surf Sci 252(5):1538-1544 47. Cotell CM, Chrisey DB, Grabowski KS et al (1992) Pulsed laser deposition of hydroxylapatite thin films on Ti-6Al-4V. J Appl Biomater 3(2):87-93 48. Fernández-Pradas J, García-Cuenca M, Clèries L et al (2002) Influence of the interface layer on the adhesion of pulsed laser deposited hydroxyapatite coatings on titanium alloy. Appl Surf Sci 195(1):31-37 49. Cotell C (1993) Pulsed laser deposition and processing of biocompatible hydroxylapatite thin films. Appl Surf Sci 69(1-4):140-148 50. Klein LC (2013) Sol-gel optics:processing and applications, vol259. Springer, New York 51. Uhlmann D, Suratwala T, Davidson K et al (1997) Sol-gel derived coatings on glass. J Non-Cryst Solids 218:113-122 52. Wen C, Xu W, Hu W et al (2007) Hydroxyapatite/titania sol-gel coatings on titanium-zirconium alloy for biomedical applications. Acta Biomater 3(3):403-410 53. Phani A, Gammel F, Hack T et al (2005) Enhanced corrosioon resistance by sol-gel-based ZrO2-CeO2 coatings on magnesium alloys. Mater Corros 56(2):77-82 54. Mavis B, Taş AC (2000) Dip coating of calcium hydroxyapatite on Ti-6Al-4V substrates. J Am Ceram Soc 83(4):989-991 55. Gu X, Zheng Y, Lan Q, Cheng Y et al (2009) Surface modification of an Mg-1Ca alloy to slow down its biocorrosion by chitosan. Biomed Mater 4(4):044109 56. Shadanbaz S, Dias GJ (2012) Calcium phosphate coatings on magnesium alloys for biomedical applications:a review. Acta Biomater 8(1):20-30 57. Wang H, Guan S, Wang X et al (2010) In vitro degradation and mechanical integrity of Mg-Zn-Ca alloy coated with Ca-deficient hydroxyapatite by the pulse electrodeposition process. Acta Biomater 6(5):1743-1748 58. Kumar RR, Wang M (2002) Functionally graded bioactive coatings of hydroxyapatite/titanium oxide composite system. Mater Lett 55(3):133-137 59. Loh N, Sia K (1992) An overview of hot isostatic pressing. J Mater Process Technol 30(1):45-65 60. Fu Y, Batchelor A (1998) Hot isostatic pressing of hydroxyapatite coating for improved fretting wear resistance. J Mater Sci Lett 17(20):1695-1696 61. Kameyama T (1999) Hybrid bioceramics with metals and polymers for better biomaterials. Bull Mater Sci 22(3):641-646 62. Narayanan R, Seshadri S, Kwon T et al (2008) Calcium phosphate-based coatings on titanium and its alloys. J Biomed Mater Res B Appl Biomater 85(1):279-299 63. Boyd IW (1994) Thin film growth by pulsed laser deposition. In:Laser in der Technik/Laser in Engineering. Springer, pp 349-359 64. Eason R (2007) Pulsed laser deposition of thin films:applications-led growth of functional materials. Wiley, Southampton 65. Jelinek M, Olsan V, Jastrabik L et al (1995) Effect of processing parameters on the properties of hydroxylapatite films grown by pulsed laser deposition. Thin Solid Films 257(1):125-129 66. Arias JL, Mayor MB, Pou J et al (2003) Micro-and nano-testing of calcium phosphate coatings produced by pulsed laser deposition. Biomaterials 24(20):3403-3408 67. Blind O, Klein LH, Dailey B et al (2005) Characterization of hydroxyapatite films obtained by pulsed-laser deposition on Ti and Ti-6AL-4V substrates. Dent Mater 21(11):1017-1024 68. Mehrotra RC (1990) Chemistry of alkoxide precursors. J NonCryst Solids 121(1-3):1-6 69. Olding T, Sayer M, Barrow D (2001) Ceramic sol-gel composite coatings for electrical insulation. Thin Solid Films 398:581-586 70. Zhang S, Li Q, Fan J et al (2009) Novel composite films prepared by sol-gel technology for the corrosion protection of AZ91D magnesium alloy. Prog Org Coat 66(3):328-335 71. Kim HW, Kim HE, Knowles JC (2004) Fluor-hydroxyapatite sol-gel coating on titanium substrate for hard tissue implants. Biomaterials 25(17):3351-3358 72. Aegerter MA, Mennig M (2013) Sol-gel technologies for glass producers and users. Springer, New York 73. Kern M, Thompson V (1994) Effects of sandblasting and silicacoating procedures on pure titanium. J Dent 22(5):300-306 74. Wennerberg A (1998) The importance of surface roughness for implant incorporation. Int J Mach Tools Manuf 38(5-6):657-662 75. Valverde GB, Jimbo R, Teixeira HS et al (2013) Evaluation of surface roughness as a function of multiple blasting processing variables. Clin Oral Implants Res 24(2):238-242 76. Mohammadi Z, Ziaei-Moayyed A, Mesgar ASM (2007) Grit blasting of Ti-6Al-4V alloy:optimization and its effect on adhesion strength of plasma-sprayed hydroxyapatite coatings. J Mater Process Technol 194(1):15-23 77. Arifvianto B, Suyitno K, Mahardika M (2012) Influence of grit blasting treatment using steel slag balls on the subsurface microhardness, surface characteristics and chemical composition of medical grade 316L stainless steel. Surf Coat Technol 210:176-182 78. Thompson G, Puleo D (1996) Ti-6Al-4V ion solution inhibition of osteogenic cell phenotype as a function of differentiation timecourse in vitro. Biomaterials 17(20):1949-1954 79. Piattelli A, Degidi M, Paolantonio M et al (2003) Residual aluminum oxide on the surface of titanium implants has no effect on osseointegration. Biomaterials 24(22):4081-4089 80. Müeller WD, Gross U, Fritz T et al (2003) Evaluation of the interface between bone and titanium surfaces being blasted by aluminium oxide or bioceramic particles. Clin Oral Implants Res 14(3):349-356 81. Novaes Jr AB, Souza SL, de Oliveira PT et al (2002) Histomorphometric analysis of the bone-implant contact obtained with 4 different implant surface treatments placed side by side in the dog mandible. Int J Oral Maxillofac Implants 17(3):377-383 82. Piattelli M, Scarano A, Paolantonio M et al (2002) Bone response to machined and resorbable blast material titanium implants:an experimental study in rabbits. J Oral Implantol 28(1):2-8 83. Le Guéhennec L, Soueidan A, Layrolle P et al (2007) Surface treatments of titanium dental implants for rapid osseointegration. Dent Mater 23(7):844-854 84. Costa HL, Hutchings IM (2008) Ink-jet printing for patterning engineering surfaces. In:NIP & digital fabrication conference, 2008. vol 1. Society for Imaging Science and Technology, pp 256-259 85. Bruzzone A, Costa H, Lonardo P et al (2008) Advances in engineered surfaces for functional performance. CIRP Ann Manuf Technol 57(2):750-769 86. Buser D, Nydegger T, Oxland T et al (1999) Interface shear strength of titanium implants with a sandblasted and acid-etched surface:a biomechanical study in the maxilla of miniature pigs. J Biomed Mater Res Part A 45(2):75-83 87. Cooper LF, Zhou Y, Takebe J et al (2006) Fluoride modification effects on osteoblast behavior and bone formation at TiO2 gritblasted c.p. titanium endosseous implants. Biomaterials 27(6):926-936 88. Ellingsen JE, Johansson CB, Wennerberg A et al (2004) Improved retention and bone-to-implant contact with fluoridemodified titanium implants. Int J Oral Maxillofac Implants 19(5):659-666 89. Aboushelib M, Feilzer A (2006) New surface treatment for zirconia based materials. European patent application (050773969) 90. Aboushelib MN, Feilzer AJ, Kleverlaan CJ (2010) Bonding to zirconia using a new surface treatment. J Prosthodont 19(5):340-346 91. Aboushelib MN, Salem NA, Taleb ALA et al (2013) Influence of surface nano-roughness on osseointegration of zirconia implants in rabbit femur heads using selective infiltration etching technique. J Oral Implantol 39(5):583-590 92. Perrin D, Szmukler-Moncler S, Echikou C et al (2002) Bone response to alteration of surface topography and surface composition of sandblasted and acid etched (SLA) implants. Clin Oral Implants Res 13(5):465-469 93. Zinger O, Zhao G, Schwartz Z et al (2005) Differential regulation of osteoblasts by substrate microstructural features. Biomaterials 26(14):1837-1847 94. Pazos L, Corengia P, Svoboda H (2010) Effect of surface treatments on the fatigue life of titanium for biomedical applications. J Mech Behav Biomed Mater 3(6):416-424 95. Zinger O, Anselme K, Denzer A et al (2004) Time-dependent morphology and adhesion of osteoblastic cells on titanium model surfaces featuring scale-resolved topography. Biomaterials 25(14):2695-2711 96. Fasasi A, Mwenifumbo S, Rahbar N et al (2009) Nano-second UV laser processed micro-grooves on Ti6Al4V for biomedical applications. Mater Sci Eng C 29(1):5-13 97. Anselme K, Linez P, Bigerelle M et al (2000) The relative influence of the topography and chemistry of TiAl6V4 surfaces on osteoblastic cell behaviour. Biomaterials 21(15):1567-1577 98. Soboyejo W, Nemetski B, Allameh S et al (2002) Interactions between MC3T3-E1 cells and textured Ti6Al4V surfaces. J Biomed Mater Res Part A 62(1):56-72 99. Chen J, Ulerich J, Abelev E et al (2009) An investigation of the initial attachment and orientation of osteoblast-like cells on laser grooved Ti-6Al-4V surfaces. Mater Sci Eng C 29(4):1442-1452 100. Chen J, Bly R, Saad M et al (2011) In-vivo study of adhesion and bone growth around implanted laser groove/RGD-functionalized Ti-6Al-4V pins in rabbit femurs. Mater Sci Eng C 31(5):826-832 101. Chen J, Mwenifumbo S, Langhammer C et al (2007) Cell/surface interactions and adhesion on Ti-6Al-4V:effects of surface texture. J Biomed Mater Res B Appl Biomater 82(2):360-373 102. Ricci JL, Alexander H (2001) Laser microtexturing of implant surfaces for enhanced tissue integration. In:Key engineering materials 2001 (pp 179-202). Trans Tech Publ 103. Hsiao WT, Chang HC, Nanci A et al (2016) Surface microtexturing of Ti-6Al-4V using an ultraviolet laser system. Mater Des 90:891-895 104. Soboyejo WO, Mercer C, Allameh S (2001) Multi-scale microstructural characterization of micro-textured Ti-6Al-4V surfaces. In:Key engineering materials 2001 (pp 203-230). Trans Tech Publ 105. Iordanova I, Antonov V, Gurkovsky S (2002) Changes of microstructure and mechanical properties of cold-rolled low carbon steel due to its surface treatment by Nd:glass pulsed laser. Surf Coat Technol 153(2):267-275 106. Montross CS, Wei T, Ye L et al (2002) Laser shock processing and its effects on microstructure and properties of metal alloys:a review. Int J Fatigue 24(10):1021-1036 107. Ruschau JJ, John R, Thompson SR et al (1999) Fatigue crack nucleation and growth rate behavior of laser shock peened titanium. Int J Fatigue 21:S199-S209 108. Vilar R (2016) Laser surface modification of biomaterials:techniques and applications. Woodhead Publishing, Cambridge 109. Ho K, Newman S (2003) State of the art electrical discharge machining (EDM). Int J Mach Tools Manuf 43(13):1287-1300 110. Prakash C, Kansal HK, Pabla B et al (2016) Electric discharge machining-a potential choice for surface modification of metallic implants for orthopedic applications:a review. Proc Inst Mech Eng B J Eng Manuf 230(2):331-353 111. Peng PW, Ou KL, Lin HC et al (2010) Effect of electricaldischarging on formation of nanoporous biocompatible layer on titanium. J Alloy Compd 492(1):625-630 112. Lee WF, Yang TS, Wu YC et al (2013) Nanoporous biocompatible layer on Ti-6Al-4V alloys enhanced osteoblast-like cell response. J Exp Clin Med 5(3):92-96 113. Roy T, Choudhury D, Ghosh S et al (2015) Improved friction and wear performance of micro dimpled ceramic-on-ceramic interface for hip joint arthroplasty. Ceram Int 41(1):681-690 114. Choudhury D, Walker R, Roy T et al (2013) Performance of honed surface profiles to artificial hip joints:an experimental investigation. Int J Precis Eng Manuf 14(10):1847-1853 115. Brehl D, Dow T (2008) Review of vibration-assisted machining. Precis Eng 32(3):153-172 116. Thoe T, Aspinwall D, Wise M (1998) Review on ultrasonic machining. Int J Mach Tools Manuf 38(4):239-255 117. Spur G, Holl SE (1996) Ultrasonic assisted grinding of ceramics. J Mater Process Technol 62(4):287-293 118. Dambatta YS, Sarhan AA, Sayuti M et al (2017) Ultrasonic assisted grinding of advanced materials for biomedical and aerospace applications-a review. Int J Adv Manuf Technol 92(9-12):3825-3858 119. Moriwaki T, Shamoto E (1991) Ultraprecision diamond turning of stainless steel by applying ultrasonic vibration. CIRP Ann Manuf Technol 40(1):559-562 120. Klocke F (2000) Ultrasonic-assisted diamond turning of glass and steel. Ind Diamond Rev 229-239 121. Negishi N (2003) Elliptical vibration assisted machining with single crystal diamond tools. Dissertation, North Carolina State University 122. Gan J, Wang X, Zhou M et al (2003) Ultraprecision diamond turning of glass with ultrasonic vibration. Int J Adv Manuf Technol 21(12):952-955 123. Kim JD, Choi IH (1997) Micro surface phenomenon of ductile cutting in the ultrasonic vibration cutting of optical plastics. J Mater Process Technol 68(1):89-98 124. Xu S, Kuriyagawa T, Shimada K et al (2017) Recent advances in ultrasonic-assisted machining for the fabrication of micro/-nano-textured surfaces. Front Mech Eng 12(1):33-45 125. Lu X, Leng Y (2005) Electrochemical micromachining of titanium surfaces for biomedical applications. J Mater Process Technol 169(2):173-178 126. Madore C, Piotrowski O, Landolt D (1999) Through-mask electrochemical micromachining of titanium. J Electrochem Soc 146(7):2526-2532 127. Sjöström T, Su B (2011) Micropatterning of titanium surfaces using electrochemical micromachining with an ethylene glycol electrolyte. Mater Lett 65(23):3489-3492 128. Saikko V (2017) Effect of contact area on the wear and friction of UHMWPE in circular translation pin-on-disk tests. J Tribol 139(6):061606 129. Turger A, Köhler J, Denkena B et al (2013) Manufacturing conditioned roughness and wear of biomedical oxide ceramics for all-ceramic knee implants. Biomed Eng Online 12(1):84 130. Bowsher J, Shelton J (2001) A hip simulator study of the influence of patient activity level on the wear of crosslinked polyethylene under smooth and roughened femoral conditions. Wear 250(1):167-179 131. Saikko V, Ahlroos T, Calonius O (2001) A three-axis knee wear simulator with ball-on-flat contact. Wear 249(3):310-315 132. Wilches L, Uribe J, Toro A (2008) Wear of materials used for artificial joints in total hip replacements. Wear 265(1):143-149 133. Lee JK, Maruthainar K, Wardle N et al (2009) Increased force simulator wear testing of a zirconium oxide total knee arthroplasty. Knee 16(4):269-274 134. Walker PS (1987) Biomechanics of total knee replacement. In:Bergmann G, Kölbel R, Rohlmann A (eds) Biomechanics:basic and applied research. Springer, Berlin, pp 19-31 |
[1] | Cheng-Wei Kang, Feng-Zhou Fang. State of the art of bioimplants manufacturing: part I [J]. Advances in Manufacturing, 2018, 6(1): 20-40. |
[2] | Bao-Rui Li, Yi Wang, Ke-Sheng Wang. A novel method for the evaluation of fashion product design based on data mining [J]. Advances in Manufacturing, 2017, 5(4): 370-376. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Tel: 86-21-66135510
Fax: 86-21-66132736
E-mail: aim@oa.shu.edu.cn