Advances in Manufacturing ›› 2020, Vol. 8 ›› Issue (2): 189-203.doi: 10.1007/s40436-020-00296-0
• ARTICLES • Previous Articles Next Articles
Yong-Cheng Lin1,2,3, Jia-Yang Chen1,2, Dao-Guang He1,2, Xin-He Li1,3, Jian Yang3
Received:
2019-08-16
Revised:
2020-01-02
Online:
2020-06-25
Published:
2020-06-08
Contact:
Yong-Cheng Lin
E-mail:yclin@csu.edu.cn
Supported by:
Yong-Cheng Lin, Jia-Yang Chen, Dao-Guang He, Xin-He Li, Jian Yang. Marginal-restraint mandrel-free spinning process for thin-walled ellipsoidal heads[J]. Advances in Manufacturing, 2020, 8(2): 189-203.
1. Xia QX, Xiao GF, Long H et al (2014) A review of process advancement of novel metal spinning. Int J Mach Tools Manuf 85:100-121 2. Wong CC, Dean TA, Lin J (2003) A review of spinning, shear forming and flow forming processes. Int J Mach Tool Manuf 43(14):1419-1435 3. Zhang Q, Zhang C, Zhang MJ et al (2015) Research of net-shape power spinning technology for poly-V grooved aluminum pulley. Int J Adv Manuf Technol 81(9/12):1601-1618 4. Lin YC, Wu Q, He DG et al (2020) Effects of solution time and cooling rate on microstructures and mechanical properties of 2219 Al alloy for a larger spun thin-wall ellipsoidal head. J Mater Res Technol. https://doi.org/10.1016/j.jmrt.2020.01.095 5. Lin YC, Qian SS,Chen XMet al (2019)Staggered spinning of thinwalledHastelloy C-276cylindrical parts:numerical simulation and experimental investigation. Thin Wall Struct 140:466-476 6. Xia Q, Long JC, Zhu NY et al (2019) Research on the microstructure evolution of Ni-based superalloy cylindrical parts during hot power spinning. Adv Manuf 7(1):52-63 7. Lin YC, Qian SS, Chen XM et al (2020) Influences of feed rate and wall thickness reduction on the microstructures of thin-walled Hastelloy C-276 cylindrical parts during staggered spinning. Int J Adv Manuf Technol 106(9/10):3809-3821 8. Zhang HR, Zhan M, Guo J et al (2019) Forming the transverse inner rib of a curved generatrix part through power spinning. Adv Manuf 7(1):105-115 9. Huang CQ, Liu JX (2020) Effects of hot spinning and heat treatment on the microstructure, texture, and mechanical properties of A356 wheel hubs. Metall Mater Trans A 51:289-298 10. Saied EK, El-Abden SZ, Abd-Eltwab AA et al (2019) Combining conventional spinning with wall thickness reduction in one pass. Int J Mech Prod Eng Res Dev 9(3):1429-1436 11. Liu CH (2007) Dynamic finite element modeling for the conventional spinning process. J Chin Inst Eng 30(5):911-916 12. Wang L, Long H (2011) Investigation of material deformation in multi-passconventionalmetal spinning.MaterDes32(5):2891-2899 13. Zhan M, Yang H, Zhang JH et al (2007) 3D FEM analysis of influence of roller feed ratio on forming force and quality of cone spinning. J Mater Process Technol 187/188:486-491 14. El-Khabeery MM, Fattouh M, El-sheikh MN et al (1991) On the conventional simple spinning of cylindrical aluminium cups. Int J Mach Tools Manuf 31(2):203-219 15. Xiao Y, Han Z, Fan ZJ et al (2018) A study of asymmetric multipass spinning for angled-flange cylinder. J Mater Process Technol 256:202-215 16. Liu JH, Yang H, Li YQ (2002) A study of the stress and strain distribution of first-pass conventional spinning under different roller-traces. J Mater Process Technol 129(1):326-329 17. Hayama M, Kudo H, Shinokura T (1970) Study of the pass schedule in conventional simple spinning. Bull Jpn Soc Mech Eng 13(65):1358-1365 18. Xia QX, Wang YP, Yuan N et al (2011) Study on spinning of pentagonal cross-section hollow-part based on orthogonal experiment design. Adv Mater Res 314/316:783-788 19. Xia QX, Lai ZY, Long H et al (2013) A study of the spinning force of hollow parts with triangular cross sections. Int J Mach Tools Manuf 68(9/12):2461-2470 20. Kong Q, Yu Z, Zhao Y et al (2017) Theoretical prediction of flange wrinkling in first-pass conventional spinning of hemispherical part. J Mater Process Technol 246:56-68 21. Zhang YQ, Shan DB, Xu WC et al (2010) Study on spinning process of a thin-walled aluminum alloy vessel head with small ratio of thickness to diameter. J Manuf Sci Eng 132(1):014504 22. Xia QX, Shima S, Kotera H et al (2005) Study of the one-path deep drawing spinning of cups. J Mater Process Technol 159(3):397-400 23. Zoghi H, Arezoodar AF, Sayeaftabi M (2012) Effect of feed and roller contact start point on strain and residual stress distribution in dome forming of steel tube by spinning at an elevated temperature. Proc IMechE Part B J Eng Manuf 226:1880-1890 24. Shima S, Kotera H, Murakami H et al (1997) Development of flexible spin-forming method. J Jpn Soc Technol Plastic 38:40-44 25. Rao GJ, Li XH, Zhou L et al (2018) A multi-constraint spinning process of ellipsoidal heads. Int J Adv Manuf Technol 94(1/4):1505-1512 26. Kawai K, Yang LN, Kudo H (2007) A flexible shear spinning of axi-symmetrical shells with a general-purpose mandrel. J Mater Process Technol 192:13-17 27. Kawai K, Yang LN, Kudo H (2001) A flexible shear spinning of truncated conical shells with a general-purpose mandrel. J Mater Process Technol 113(1/3):28-33 28. Kang DC, Gao XC, Meng XF et al (1999) Study on the deformation mode of conventional spinning of plates. J Mater Process Technol 91(1/3):226-230 29. Han ZR, Fan ZJ, Xiao Y et al (2017) A research on thickness distribution of oblique cone in mandrel-free shear spinning. Int J Adv Manuf Technol 90:2901-2912 30. Li Y, Wang J, Lu GD et al (2014) A numerical study of the effects of roller paths on dimensional precision in mandrel-free spinning of sheet metal. J Zhejiang Univ-Sci A 15(6):432-446 31. Sekiguchi A, Arai H (2012) Control of wall thickness distribution by oblique shear spinning methods. J Mater Process Technol 212(4):786-793 32. Polyblank JA, Allwood JM (2015) Parametric toolpath design in metal spinning. CIRP Ann 64(1):301-304 33. Jia Z, Han ZR, Liu BM (2017) Numerical simulation and experimental study on the non-axisymmetric mandrel-free shear spinning. Int J Adv Manuf Technol 92(1/4):497-504 34. Liu CH (2007) The simulation of the multi-pass and die-less spinning process. J Mater Process Technol 192/193:518-524 35. Sugita Y, Arai H (2015) Formability in synchronous multipass spinning using simple pass set. J Mater Process Technol 217:336-344 36. Imamura Y, Ikawa K, Sakane Y et al (2017) Investigation of forming accuracy in mandrel-free hot-spinning. Procedia Eng 207:1701-1706 37. Guo H, Wang J, Lu G et al (2017) A study of multi-pass scheduling methods for die-less spinning. J ZheJiang Univ-Sci A 18(6):413-429 38. User's Manual (2012) ABAQUS analysis user's manual. ABAQUS Inc version 6:12-3 39. Han D, Zhan M, Yang H (2013) Deformation mechanism of TA15 shells in hot shear spinning under various load conditions. Rare Metal Mat Eng 42(2):243-248 |
[1] | Ben-Kai Li, Qing Miao, Min Li, Xi Zhang, Wen-Feng Ding. An investigation on machined surface quality and tool wear during creep feed grinding of powder metallurgy nickel-based superalloy FGH96 with alumina abrasive wheels [J]. Advances in Manufacturing, 2020, 8(2): 160-176. |
[2] | Xiang-Ru Chen, Qi-Jie Zhai, Han Dong, Bao-Hua Dai, Hardy Mohrbacher. Molybdenum alloying in cast iron and steel [J]. Advances in Manufacturing, 2020, 8(1): 3-14. |
[3] | Tim Outteridge, Nicole Kinsman, Gaetano Ronchi, Hardy Mohrbacher. Editorial: Industrial relevance of molybdenum in China [J]. Advances in Manufacturing, 2020, 8(1): 35-39. |
[4] | M. Wasif Safeen, P. Russo Spena, G. Buffa, D. Campanella, A. Masnata, L. Fratini. Effect of position and force tool control in friction stir welding of dissimilar aluminum-steel lap joints for automotive applications [J]. Advances in Manufacturing, 2020, 8(1): 59-71. |
[5] | Behrouz Bagheri, Mahmoud Abbasi. Development of AZ91/SiC surface composite by FSP: effect of vibration and process parameters on microstructure and mechanical characteristics [J]. Advances in Manufacturing, 2020, 8(1): 82-96. |
[6] | Xiao-Liang Shi, Shi-Chao Xiu, Hui-Ling Su. Residual stress model of pre-stressed dry grinding considering coupling of thermal, stress, and phase transformation [J]. Advances in Manufacturing, 2019, 7(4): 401-410. |
[7] | Tao Chen, Ye-Xin Chen, Biao Yang, Teng Wang. Effects of boron content on environmental embrittlement of ordered Ni3Fe alloys [J]. Advances in Manufacturing, 2019, 7(2): 221-227. |
[8] | Dong-Dong Chen, Yong-Cheng Lin, Xiao-Min Chen. A strategy to control microstructures of a Ni-based superalloy during hot forging based on particle swarm optimization algorithm [J]. Advances in Manufacturing, 2019, 7(2): 238-247. |
[9] | Heng Li, Tian-Jun Bian, Chao Lei, Gao-Wei Zheng, Yu-Fei Wang. Dynamic interplay between dislocations and precipitates in creep aging of an Al-Zn-Mg-Cu alloy [J]. Advances in Manufacturing, 2019, 7(1): 15-29. |
[10] | Ze-Xing Su, Chao-Yang Sun, Ming-Wang Fu, Ling-Yun Qian. Physical-based constitutive model considering the microstructure evolution during hot working of AZ80 magnesium alloy [J]. Advances in Manufacturing, 2019, 7(1): 30-41. |
[11] | Qin-Xiang Xia, Jin-Chuan Long, Ning-Yuan Zhu, Gang-Feng Xiao. Research on the microstructure evolution of Ni-based superalloy cylindrical parts during hot power spinning [J]. Advances in Manufacturing, 2019, 7(1): 52-63. |
[12] | Hong-Rui Zhang, Mei Zhan, Jing Guo, Xian-Xian Wang, Peng-Fei Gao, Fei Ma. Forming the transverse inner rib of a curved generatrix part through power spinning [J]. Advances in Manufacturing, 2019, 7(1): 105-115. |
[13] | Ehsan Jafarzadeh, Mohammad R. Movahhedy, Saeed Khodaygan, Mohammad Ghorbani. Prediction of machining chatter in milling based on dynamic FEM simulations of chip formation [J]. Advances in Manufacturing, 2018, 6(3): 334-344. |
[14] | Dipesh Popli, Meenu Gupta. Experimental study and optimization of cutting parameters in machining of super alloy with hybrid ultrasonic method [J]. Advances in Manufacturing, 2017, 5(3): 199-216. |
[15] | Sergio Manzetti, Francesco Enrichi. State-of-the-art developments in metal and carbon-based semiconducting nanomaterials: applications and functions in spintronics, nanophotonics, and nanomagnetics [J]. Advances in Manufacturing, 2017, 5(2): 105-119. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Tel: 86-21-66135510
Fax: 86-21-66132736
E-mail: aim@oa.shu.edu.cn