Advances in Manufacturing ›› 2022, Vol. 10 ›› Issue (4): 495-519.doi: 10.1007/s40436-021-00384-9
• ARTICLES •
Bao-Yu Zhang, Yu-Ning Zeng, Xue-Qin Pang, Song-Qing Li, Xiao Liu, Wen-Jun Deng
Received:
2021-04-08
Revised:
2021-10-20
Published:
2022-11-05
Contact:
Wen-Jun Deng
E-mail:dengwj@scut.edu.cn
Supported by:
Bao-Yu Zhang, Yu-Ning Zeng, Xue-Qin Pang, Song-Qing Li, Xiao Liu, Wen-Jun Deng. Feasibility analysis and process characteristics of selective laser ablation assisted milling Inconel 718[J]. Advances in Manufacturing, 2022, 10(4): 495-519.
1. Yin QA, Liu ZQ, Wang B et al (2020) Recent progress of machinability and surface integrity for mechanical machining Inconel 718: a review. Int J Adv Manuf Tech 109: 215–245 2. Liao ZR, Polyakov M, Diaz OG et al (2019) Grain refinement mechanism of nickel-based superalloy by severe plastic deformation-mechanical machining case. Acta Mater 180: 2–14 3. Lin YC, Li KK, Li HB et al (2015) New constitutive model for high-temperature deformation behavior of Inconel 718 superalloy. Mater Design 74: 108–118 4. Zhang HB, Zhang KF, Zhou HP et al (2015) Effect of strain rate on microstructure evolution of a nickel-based superalloy during hot deformation. Mater Design 80: 51–62 5. Ren XP, Liu ZQ (2016) Influence of cutting parameters on work hardening behavior of surface layer during turning superalloy Inconel 718. Int J Adv Manuf Tech 86: 1–9 6. Kuppuswamy R, Zunega J, Naidoo S (2017) Flank wear assessment on discrete machining process behavior for Inconel 718. Int J Adv Manuf Tech 93: 2097–2109 7. Zhu DH, Zhang XM, Ding H (2013) Tool wear characteristics in machining of nickel-based superalloys. Int J Mach Tool Manu 64: 60–77 8. Przestacki D, Chwalczuk T (2017) The analysis of surface topography during turning of Waspaloy with the application of response surface method. MATEC Web Conf 136: 02006. https://doi.org/10.1051/matecconf/201713602006 9. Ulutan D, Ozel T (2011) Machining induced surface integrity in titanium and nickel alloys: a review. Int J Mach Tool Manu 51: 250–280 10. Mohsan AUH, Liu Z, Padhy GK (2017) A review on the progress towards improvement in surface integrity of Inconel 718 under high pressure and flood cooling conditions. Int J Adv Manuf Tech 97: 107–125 11. Feng YX, Hsu FC, Lu YT et al (2019) Residual stress prediction in ultrasonic vibration—assisted milling. Int J Adv Manuf Tech 104(5): 2579–2592 12. Xie HB, Yang ZQ, Qin N et al (2020) Strain rate analyses during elliptical vibration cutting of Inconel 718 using finite element analysis, Taguchi method, and ANOVA. Adv Manuf 8: 316–330 13. Przestacki D, Jankowiak M (2013) Surface roughness analysis after laser assisted machining of hard to cut materials. In: The 14th international conference on metrology and properties of engineering surfaces, 17–21 June, Taipei, China. https://doi.org/10.1088/1742-6596/483/1/012019 14. Feng YX, Hung TP, Lu YT et al (2019) Flank tool wear prediction of laser-assisted milling. J Manuf Process 43: 292–299 15. Venkatesan K, Ramanujam R, Kuppan P (2017) Investigation of machinability characteristics and chip morphology study in laser-assisted machining of Inconel 718. Int J Adv Manuf Tech 97: 3807–3821 16. Pan ZP, Feng YX, Lu YT et al (2017) Force modeling of Inconel 718 laser-assisted end milling under recrystallization effects. Int J Adv Manuf Tech 92(5/8): 2965–2974 17. Pan ZP, Lu YT, Lin YF et al (2017) Analytical model for force prediction in laser-assisted milling of IN718. Int J Adv Manuf Tech 90(9/12): 1–8 18. Dumitrescu P, Koshy P, Stenekes J et al (2006) High-power diode laser assisted hard turning of AISI D2 tool steel. Int J Mach Tool Manu 46(15): 2009–2016 19. Feng YX, Huang TP, Lu YT et al (2019) Residual stress prediction in laser-assisted milling considering recrystallization effects. Int J Adv Manuf Tech 102: 393–402 20. Feng YX, Huang TP, Lu YT et al (2019) Surface roughness modeling in laser-assisted end milling of Inconel 718. Mach Sci Technol 23(4): 650–668 21. Kawalec M, Przestacki D, Bartkowiak K et al (2008) Laser assisted machining of aluminium composite reinforced by SiC particle. In: The 27th international congress on laser materials processing, laser microprocessing and nanomanufacturing, 20–23 October, Temecula, USA. https://doi.org/10.2351/1.5061278 22. Feng YX, Hung TP, Lu YF et al (2019) Analytical prediction of temperature in laser-assisted milling with laser preheating and machining effects. Int J Adv Manuf Tech 100: 3185–3195 23. Feng YX, Hung TP, Lu YT et al (2020) Inverse analysis of the residual stress in laser-assisted milling. Int J Adv Manuf Tech 106: 2643–2475 24. Attia H, Tavakoli S, Vargas R et al (2010) Laser-assisted high-speed finish turning of superalloy Inconel 718 under dry conditions. CIRP Ann Manuf Tech 59(1): 83–88 25. Navas VG, Arriola I, Gonzalo O et al (2013) Mechanisms involved in the improvement of Inconel 718 machinability by laser assisted machining (LAM). Int J Mach Tool Manu 74: 19–28 26. Wei C, Guo W, Pratomo ES et al (2020) High speed, high power density laser-assisted machining of Al-SiC metal matrix composite with significant increase in productivity and surface quality. J Mater Process Tech 285: 116784. https://doi.org/10.1016/j.jmatprotec.2020.116784 27. Kim TW, Lee CM (2015) A study on the development of milling process for silicon nitride using ball end-mill tools by laser-assisted machining. Int J Adv Manuf Tech 77(5/8): 1205–1211 28. Hwang SJ, Oh WJ, Lee CM (2016) A study of preheating characteristics according to various preheating methods for laser-assisted machining. Int J Adv Manuf Tech 86(9/12): 1–10 29. Shang ZD, Liao ZR, Sarasua JA et al (2019) On modelling of laser assisted machining: forward and inverse problems for heat placement control. Int J Mach Tool Manu 138: 36–50 30. Xu DD, Liao ZR, Axinte D et al (2020) Investigation of surface integrity in laser-assisted machining of nickel based superalloy. Mater Design 194: 108851. https://doi.org/10.1016/j.matdes.2020.108851 31. Kukliński M, Bartkowska A, Przestacki D (2019) Laser alloying monel 400 with amorphous boron to obtain hard coatings. Materials 12(21): 3494. https://doi.org/10.3390/ma12213494 32. Kukliński M, Bartkowska A, Przestacki D (2018) Investigation of laser heat treated Monel 400. MATEC Web Conf 219: 02005. https://doi.org/10.1051/matecconf/201821902005 33. Liu C, Wan M, Zhang WH et al (2021) Chip formation mechanism of Inconel 718: a review of models and approaches. Chin J Mech Eng 34: 34. https://doi.org/10.1186/s10033-021-00552-9 34. Ahmed N, Darwish S, Abdulrehman AM (2016) Laser ablation and laser-hybrid ablation processes: a review. Mater Manuf Process 31(9/12): 1121–1142 35. Cejnar M, Kobler H, Hunyor SN (1993) Quantitative photoplethysmography: Lambert-Beer law or inverse function incorporating light scatter. Int J Nuner Meth Bio 15(2): 151–154 36. Pham DT, Dimov SS, Petkov PV (2007) Laser milling of ceramic components. Int J Mach Tool Manu 47(3/4): 618–626 37. Ahmed YS, Paiva JM, Arif AFM et al (2020) The effect of laser micro-scale textured tools on the tool-chip interface performance and surface integrity during austenitic stainless-steel turning. Appl Surf Sci 510: 145455. https://doi.org/10.1016/j.apsusc.2020.145455 38. Bushlya V, Zhou JM, Lenrick F et al (2011) Characterization of white layer generated when turning aged Inconel 718. Procedia Eng 19: 60–66 39. Elbestawi MA, Srivastava AK, El-Wardany TI (1996) A model for chip formation during machining of hardened steel. CIRP Ann Manuf Tech 45(1): 71–76 40. Liang XL, Liu ZQ, Yao GH et al (2019) Investigation of surface topography and its deterioration resulting from tool wear evolution when dry turning of titanium alloy Ti-6Al-4V. Tribol Int 135: 130–142 41. Oliaei S, Karpat Y (2016) Investigating the influence of built-up edge on forces and surface roughness in micro scale orthogonal machining of titanium alloy Ti6Al4V. J Mater Process Tech 235: 28–40 |
[1] | Miao-Xian Guo, Jin Liu, Li-Mei Pan, Chong-Jun Wu, Xiao-Hui Jiang, Wei-Cheng Guo. An integrated machine-process-controller model to predict milling surface topography considering vibration suppression [J]. Advances in Manufacturing, 2022, 10(3): 443-458. |
[2] | Da-Xiang Deng, Jian Zheng, Xiao-Long Chen, Guang Pi, Yong-Heng Liu. Fabrication of micro pin fins on inclined V-shaped microchannel walls via laser micromilling [J]. Advances in Manufacturing, 2022, 10(2): 220-234. |
[3] | Lorcan O'Toole, Cheng-Wei Kang, Feng-Zhou Fang. Precision micro-milling process: state of the art [J]. Advances in Manufacturing, 2021, 9(2): 173-205. |
[4] | Dong-Dong Li, Wei-Min Zhang, Yuan-Shi Li, Feng Xue, Jürgen Fleischer. Chatter identifi cation of thin-walled parts for intelligent manufacturing based on multi-signal processing [J]. Advances in Manufacturing, 2021, 9(1): 22-33. |
[5] | Ji-Peng Chen, Lin Gu, Wan-Sheng Zhao, Mario Guagliano. Modeling of flow and debris ejection in blasting erosion arc machining in end milling mode [J]. Advances in Manufacturing, 2020, 8(4): 508-518. |
[6] | Qi-Sen Chen, Li Dai, Yu Liu, Qiu-Xiang Shi. A cortical bone milling force model based on orthogonal cutting distribution method [J]. Advances in Manufacturing, 2020, 8(2): 204-215. |
[7] | Wei Zhao, Asif Iqbal, Ding Fang, Ning He, Qi Yang. Experimental study on the meso-scale milling of tungsten carbide WC-17.5Co with PCD end mills [J]. Advances in Manufacturing, 2020, 8(2): 230-241. |
[8] | Xiao-Fen Liu, Wen-Hu Wang, Rui-Song Jiang, Yi-Feng Xiong, Kun-Yang Lin. Tool wear mechanisms in axial ultrasonic vibration assisted milling in-situ TiB2/7050Al metal matrix composites [J]. Advances in Manufacturing, 2020, 8(2): 252-264. |
[9] | Xiao-Guang Guo, Ming Li, Zhi-Gang Dong, Rui-Feng Zhai, Zhu-Ji Jin, Ren-Ke Kang. Smooth particle hydrodynamics modeling of cutting force in milling process of TC4 [J]. Advances in Manufacturing, 2019, 7(4): 364-373. |
[10] | Anton Germashev, Viktor Logominov, Dmitri Anpilogov, Yuri Vnukov, Vladimir Khristal. Optimal cutting condition determination for milling thin-walled details [J]. Advances in Manufacturing, 2018, 6(3): 280-290. |
[11] | P. Wiederkehr, T. Siebrecht, J. Baumann, D. Biermann. Point-based tool representations for modeling complex tool shapes and runout for the simulation of process forces and chatter vibrations [J]. Advances in Manufacturing, 2018, 6(3): 301-307. |
[12] | Lutfi Taner Tunc, Orkun Ozsahin. Use of inverse stability solutions for identification of uncertainties in the dynamics of machining processes [J]. Advances in Manufacturing, 2018, 6(3): 308-318. |
[13] | Michael Löser, Andreas Otto, Steffen Ihlenfeldt, Günter Radons. Chatter prediction for uncertain parameters [J]. Advances in Manufacturing, 2018, 6(3): 319-333. |
[14] | Ehsan Jafarzadeh, Mohammad R. Movahhedy, Saeed Khodaygan, Mohammad Ghorbani. Prediction of machining chatter in milling based on dynamic FEM simulations of chip formation [J]. Advances in Manufacturing, 2018, 6(3): 334-344. |
[15] | Ramanuj Kumar, Ashok Kumar Sahoo, Purna Chandra Mishra, Rabin Kumar Das. Comparative study on machinability improvement in hard turning using coated and uncoated carbide inserts: part II modeling, multi-response optimization, tool life, and economic aspects [J]. Advances in Manufacturing, 2018, 6(2): 155-175. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Tel: 86-21-66135510
Fax: 86-21-66132736
E-mail: aim@oa.shu.edu.cn